Skip to main content

Advertisement

Log in

Population PK/PD modeling of eltrombopag in subjects with advanced solid tumors with chemotherapy-induced thrombocytopenia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Eltrombopag, a thrombopoietin receptor agonist, is being evaluated for the treatment of chemotherapy-induced thrombocytopenia. Due to the delay in platelet response after the administration of eltrombopag or chemotherapy, a modeling and simulation approach was used to optimize the eltrombopag dosing regimen.

Methods

Pharmacokinetic (PK) data from 2 studies in healthy subjects and PK and platelet data from a Phase II study in subjects with cancer receiving carboplatin/paclitaxel (where eltrombopag was given 10 days after chemotherapy) were used to develop a nonlinear mixed-effects PK/PD model. Alternative eltrombopag dosing regimens were then simulated.

Results

The PK model was a linear two-compartment model with first-order absorption. Being Asian, female, and >50 years of age were associated with higher eltrombopag exposure. The time course of platelet counts was described by a four-compartment transit model. Carboplatin inhibited platelet precursor production linearly with dose, with increased effect with each cycle of chemotherapy. Eltrombopag stimulated platelet precursor production, proportional to plasma eltrombopag concentration, and stimulation (slope of the concentration effect) was attenuated with each cycle of chemotherapy.

Conclusions

Simulations indicated that eltrombopag administered 5 days before and 5 days after chemotherapy minimizes the decrease and fluctuations in platelet counts relative to other evaluated dosing regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Promacta prescribing information. http://us.gsk.com/products/assets/us_promacta.pdf

  2. Bussel JB, Provan D, Shamsi T, Cheng G, Psaila B, Kovaleva L et al (2009) Effect of eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomized, double-blind, placebo-controlled trial. Lancet 373(9664):641–648

    Article  PubMed  CAS  Google Scholar 

  3. Bussel J, Cheng G, Saleh MN, Psaila B, Kovaleva L, Meddeb B et al (2007) Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N Engl J Med 357:2237–2247

    Article  PubMed  CAS  Google Scholar 

  4. McHutchison JG, Dusheiko G, Shiffman ML, Rodriguez-Torres M, Sigal S, Bourliere M, TPL102357 Study Group et al (2007) Eltrombopag for thrombocytopenia in patients with cirrhosis associated with hepatitis C. N Engl J Med 357(22):2227–2236

    Article  PubMed  CAS  Google Scholar 

  5. Kellum A, Jagiello-Gruszfeld A, Bondarenko IN, Patwardhan R, Messam C, Kamel YM (2010) A randomized, double-blind, placebo-controlled, dose ranging study to assess the efficacy and safety of eltrombopag in patients receiving carboplatin/paclitaxel for advanced solid tumors. Curr Med Res Opin 26(10):2339–2346

    Article  PubMed  CAS  Google Scholar 

  6. Vadhan-Raj S, Patel S, Bueso-Ramos C, Folloder J, Papadopolous N, Burgess A, Broemeling LD et al (2003) Importance of predosing of recombinant human thrombopoietin to reduce chemotherapy-induced early thrombocytopenia. J Clin Oncol 21(16):3158–3167

    Article  PubMed  CAS  Google Scholar 

  7. Jenkins J, Williams D, Deng Y, Collins DA, Kitchen VS (2010) Eltrombopag, an oral thrombopoietin receptor agonist, has no impact on the pharmacokinetic profile of probe drugs for cytochrome P450 isoenzymes CYP3A4, CYP1A2, CYP2C9 and CYP2C19 in healthy men: a cocktail analysis. Eur J Clin Pharmacol 66:67–76

    Article  PubMed  CAS  Google Scholar 

  8. Matthys G, Park JW, McGuire S, Wire MB, Zhang J, Bowen C et al (2010) Eltrombopag does not affect cardiac repolarization: results from a definitive QTc study in healthy subjects. Br J Clin Pharmacol 70(1):24–33

    Article  PubMed  CAS  Google Scholar 

  9. Williams DD, Peng B, Bailey CK, Wire MB, Deng Y, Park JW et al (2009) Effects of food and antacids on the pharmacokinetics of eltrombopag in healthy adults: two single-dose, open-label, randomized-sequence, crossover studies. Clin Ther 31:764–776

    Article  PubMed  CAS  Google Scholar 

  10. Beal SL, Sheiner LB, Boeckmann AJ (eds) NONMEM Users Guides (1989–2006). Icon Development Solutions, Ellicott City

  11. Gibiansky E, Zhang J, Williams D, Wang Z, Ouellet D (2011) Population pharmacokinetics of eltrombopag in healthy subjects and patients with chronic idiopathic thrombocytopenic purpura. J Clin Pharmacol 51(6):842–856

    Article  PubMed  CAS  Google Scholar 

  12. Gastonguay MR (2011) Full covariate models as an alternative to methods relying on statistical significance for inferences about covariate effects: a review of methodology and 42 case studies. PAGE 20, Abstr 2229. www.page-meeting.org/?abstract=2229

  13. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  14. Chawla SP, Staddon A, Hendifar A, Messam CA, Patwardhan R, Mostafa Kamel Y (2013) Results of a phase I dose escalation study of eltrombopag in patients with advanced soft tissue sarcoma receiving doxorubicin and ifosfamide. BMC Cancer 13:121. doi:10.1186/1471-2407-13-121

  15. Joerger M, Huitema ADR, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E et al (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13(21):6410–6418

    Article  PubMed  CAS  Google Scholar 

  16. Jacqmin P, Snoeck E, van Schaick EA, Gieschke R, Pillai P, Steimer JL et al (2007) Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn 34(1):57–85

    Article  PubMed  CAS  Google Scholar 

  17. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20(24):4713–4721

    Article  PubMed  Google Scholar 

  18. Hayes S, Ouellet D, Zhang J, Wire M, Gibiansky E (2011) Population PK/PD modeling of eltrombopag in healthy volunteers and patients with immune thrombocytopenic purpura and optimization of response-guided dosing. J Clin Pharmacol 51(10):1403–1417

    Article  PubMed  CAS  Google Scholar 

  19. Dunton CJ (2002) Management of treatment-related toxicity in advanced ovarian cancer. Oncologist 7(Suppl. 5):11–19

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Williams DD, Moore KP (2009) Use of eltrombopag exposure-platelet response relationship for dose optimization in patients with chronic HCV-infection with and without interferon. PAGE 18, Abstr 1494. www.page-meeting.org/?abstract=1494

  21. Chalret du Rieu Q, Fouliard S, White-Koning M, Jacquet A, Kloos I, Depil S, Chatelut E, Chenel M (2012) Semi-mechanistic thrombocytopenia model of a new histone deacetylase inhibitor (HDACi) in development, with a drug-induced apoptosis of megakaryocytes. PAGE 21, Abstr 2503. www.page-meeting.org/?abstract=2503

  22. Meille C, Reddy MB, Walz A, Retout S, Nichols G, Glenn K, Pignatello M, Bottino D, Zhi J, Middleton S, Lavé T (2012) Modified model of drug induced thrombocytopenia efficiently projects safe starting dose in human from preclinical data. PAGE 21, Abstr 2446. www.page-meeting.org/?abstract=2446

  23. Kaefer A, Yang J, Xiong H, Pradhan R, Jaeger M, Noertersheuser P, Mensing S. Evaluation of the long-term decline of platelets following Navitoclax (ABT-263) administration in Cancer Patients with a semi-physiological pharmacodynamic model

  24. Retout S, Meille C, Nichols G, Middleton S, Bottino D, Frey N (2012) Prediction of occurrence of thrombocytopenia to select Phase 1b dose and dosing regimen for a selective inhibitor of p53-MDM2 in patients with solid tumors. PAGE 21, Abstr 2391. www.page-meeting.org/?abstract=2391

  25. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Pérez-Ruixo JJ, Chow AT (2010) Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 12(4):729–740. doi:10.1208/s12248-010-9234-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Clinical trials described in this work were funded by GlaxoSmithKline. Paul N. Mudd Jr., Daniele Ouellet, and Brendan M. Johnson are GSK employees. Ekaterina Gibiansky and Siobhan Hayes were consultants for GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Gibiansky.

Electronic supplementary material

Appendix: differential equations of the final PK/PD model

Appendix: differential equations of the final PK/PD model

PK:

$$\begin{array}{*{20}c} {\frac{{{\text{dA}}_{1} }}{{{\text{d}}t}} = - {\text{A}}_{1} \cdot K_{\text{A}} } \hfill & {\text{Gut}} \hfill \\ {\frac{{{\text{dA}}_{2} }}{{{\text{d}}t}} = {\text{A}}_{1} \cdot K_{\text{A}} - {\text{A}}_{2} \cdot K_{23} + {\text{A}}_{3} \cdot K_{32} - {\text{A}}_{2} \cdot K} \hfill & {\text{Central compartment}} \hfill \\ {\frac{{{\text{dA}}_{3} }}{{{\text{d}}t}} = {\text{A}}_{2} \cdot K_{23} - {\text{A}}_{3} \cdot K_{32} } \hfill & {\text{Peripheral compartment}} \hfill \\ {\frac{{{\text{dA}}_{4} }}{{{\text{d}}t}} = - {\text{A}}_{4} \cdot K_{\text{C}} } \hfill & {{\text{Carboplatin compartment }}\left( {\text{KPD}} \right)} \hfill \\ \end{array}$$

PD:

$$\begin{array}{*{20}c} {\frac{{{\text{dA}}_{5} }}{{{\text{d}}t}} = K_{\text{IN}} \cdot \left( {1 - {\text{EFFC}}} \right) \cdot \left( {1 + {\text{EFFE}}} \right){ - }K_{\text{T}} \cdot {\text{A}}_{5} } \hfill & {{\text{Precursor production compartment }}\left( {\text{BM1}} \right)} \hfill \\ {\frac{{{\text{dA}}_{6} }}{{{\text{d}}t}} = K_{\text{T}} \cdot {\text{A}}_{5} - K_{\text{T}} \cdot {\text{A}}_{6} } \hfill & {{\text{Transit/maturation compartment }}\left( {\text{BM2}} \right)} \hfill \\ {\frac{{{\text{dA}}_{7} }}{{{\text{d}}t}} = K_{\text{T}} \cdot {\text{A}}_{6} - K_{\text{T}} \cdot {\text{A}}_{7} } \hfill & {{\text{Transit/maturation compartment }}\left( {\text{BM3}} \right)} \hfill \\ {\frac{{{\text{dA}}_{8} }}{{{\text{d}}t}} = K_{\text{T}} \cdot {\text{A}}_{7} - K_{\rm deg} \cdot {\text{A}}_{8} } \hfill & {{\text{Platelet compartment }}\left( {\text{P}} \right)} \hfill \\ \end{array}$$

Where

Initial conditions

\(\begin{aligned} K_{\text{A}} & = 0,\quad {\text{if}}\;t < t_{\text{LAG}} \\ & = K_{{{\text{A}}_{1} }} ,\quad {\text{if}}\;t_{\text{LAG}} \le t < t_{\text{LAG}} + t_{\text{M}} \\ & = K_{{{\text{A}}_{2} }} ,\quad {\text{if}}\;t > t_{\text{LAG}} + t_{\text{M}} \\ \end{aligned}\)

A1(0) = Dose1 (eltrombopag)

A2(0) = A3(0) = 0

A4(0) = Dose2 (carboplatin)

A5(0) = A6(0) = A7(0) = K IN/K T

A8(0) = K IN/K deg

\(\begin{gathered} K_{ 2 3} = {\text{Q}}/{\text{V}}_{\text{C}} \hfill \\ K_{ 3 2} = {\text{Q}}/{\text{V}}_{\text{P}} \hfill \\ K = {\text{CL}}/{\text{V}}_{\text{C}} \hfill \\ \end{gathered}\)

\(\begin{gathered} K_{\rm deg } = K_{\text{IN}} /{\text{BASE}} \hfill \\ {\text{EFFC}} = {\text{SLPC}}\, \times \,{\text{A}}_{ 4} \hfill \\ {\text{SLPC}} = {\text{SLPC}}_{0} \, \times \,{\text{CYCLE}}^{\gamma 1} \hfill \\ {\text{EFFE}} = {\text{SLPE}}\, \times \,{\text{A}}_{ 2} /{\text{V}}_{\text{C}} \hfill \\ {\text{SLPE}} = {\text{SLPE}}_{0} \, \times \,{\text{CYCLE}}^{\gamma 2} \hfill \\ \end{gathered}\)

  1. K A  First-order absorption rate constant, K elimination rate constant, CL/F oral clearance, Vc/F oral volume of distribution, Q/F distributional clearance, Vp/F peripheral volume, K C  elimination rate constant from the hypothetical carboplatin compartment, K IN  production rate of platelet precursors, K T  maturation rate of platelet precursors, K deg  first-order elimination rate of platelets, BASE baseline platelet count, SLPC linear proportionality constant of carboplatin effect, SLPE linear proportionality constant of eltrombopag effect, A x  amount of drug (for PK compartments) or concentration of platelets/precursors (for PD compartments) in compartment x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, S., Mudd, P.N., Ouellet, D. et al. Population PK/PD modeling of eltrombopag in subjects with advanced solid tumors with chemotherapy-induced thrombocytopenia. Cancer Chemother Pharmacol 71, 1507–1520 (2013). https://doi.org/10.1007/s00280-013-2150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2150-9

Keywords

Navigation