Skip to main content

Advertisement

Log in

Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Molecular targeting of cellular signaling pathways is a promising approach in cancer therapy, but often fails to achieve sustained benefit because of the activation of collateral cancer cell survival and proliferation pathways. We tested the hypothesis that a combination of targeted agents that inhibit compensatory pathways would be more effective than single agents in controlling pancreatic cancer cell growth. We investigated whether everolimus, an mTOR inhibitor, and sorafenib, a multi-kinase inhibitor, would together inhibit growth of low-passage, patient-derived pancreatic cancer xenografts in mice more efficaciously than either agent alone.

Methods

Tumor volume progression was measured following treatment with both drugs as single agents, in combination, and at multiple doses. Pharmacokinetics in tumors and other tissues was also assessed. Pharmacodynamic interactions were evaluated quantitatively.

Results

A 5-week regimen of daily oral doses of 10 mg/kg sorafenib and 0.5 mg/kg everolimus, alone and in combination, did not achieve significant tumor growth inhibition. Higher doses (20 mg/kg of sorafenib and 1 mg/kg of everolimus) inhibited tumor growth significantly when given alone and caused complete inhibition of growth when given in combination. Tumor volume progression was described by a linear growth model, and drug effects were described by Hill-type inhibition. Using population modeling approaches, dual-interaction parameter estimates indicated a highly synergistic pharmacodynamic interaction between the two drugs.

Conclusions

The results indicate that combinations of mTOR and multi-kinase inhibitors may offer greater efficacy in pancreatic cancer than either drug alone. Drug effects upon tumor stromal elements may contribute to the enhanced anti-tumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  2. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  PubMed  CAS  Google Scholar 

  3. Maitra A, Hruban RH (2008) Pancreatic cancer. Annu Rev Pathol 3:157–188

    Article  PubMed  CAS  Google Scholar 

  4. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    Article  PubMed  CAS  Google Scholar 

  5. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  6. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF (2007) Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 46:840–848

    Article  PubMed  CAS  Google Scholar 

  7. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622

    Article  PubMed  CAS  Google Scholar 

  8. Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R, Tobler S, Heusser C, O’Reilly T, Stolz B, Marti A, Thomas G, Lane HA (2004) Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 64:252–261

    Article  PubMed  CAS  Google Scholar 

  9. Stracke S, Ramudo L, Keller F, Henne-Bruns D, Mayer JM (2006) Antiproliferative and overadditive effects of everolimus and mycophenolate mofetil in pancreas and lung cancer cells in vitro. Transpl Proc 38:766–770

    Article  CAS  Google Scholar 

  10. Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS (2009) Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 27:193–198

    Article  PubMed  CAS  Google Scholar 

  11. Iqbal S, Lenz HJ, Yang D, Ramanathan RK, Bahary N, Shibata S, Morgan RJ, Gandara DR (2008) A randomized phase II study of BAY 43–9006 in combination with gemcitabine in metastatic pancreatic carcinoma: A California Cancer Consortium study (CCC-P). ASCO, American Society of Clinical Oncology, p 11802

    Google Scholar 

  12. Campbell M, Allen WE, Sawyer C, Vanhaesebroeck B, Trimble ER (2004) Glucose-potentiated chemotaxis in human vascular smooth muscle is dependent on cross-talk between the PI3 K and MAPK signaling pathways. Circ Res 95:380–388

    Article  PubMed  CAS  Google Scholar 

  13. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63:305–312

    Article  PubMed  CAS  Google Scholar 

  14. Naegele S, Morley SJ (2004) Molecular cross-talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress. J Biol Chem 279:46023–46034

    Article  PubMed  CAS  Google Scholar 

  15. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, Cheng AL (2011) Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 337:155–161

    Article  PubMed  CAS  Google Scholar 

  16. Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22

    Article  PubMed  Google Scholar 

  17. Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154

    Article  PubMed  CAS  Google Scholar 

  18. Hsieh Y, Galviz G, Long BJ (2009) Ultra-performance hydrophilic interaction liquid chromatography/tandem mass spectrometry for the determination of everolimus in mouse plasma. Rapid Commun Mass Spectrom 23:1461–1466

    Article  PubMed  CAS  Google Scholar 

  19. Jain L, Gardner ER, Venitz J, Dahut W, Figg WD (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46:362–367

    Article  PubMed  CAS  Google Scholar 

  20. Pawaskar D, Straubinger R, Fetterly G, Hylander B, Repasky E, Ma W, Jusko W (2013) Physiologically based pharmacokinetic models for everolimus and sorafenib in mice. Cancer Chemother Pharmacol. doi:10.1007/s00280-013-2116-y

  21. Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31:345–380

    Article  PubMed  CAS  Google Scholar 

  22. Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW, Jusko WJ (2013) Interactions of everolimus and sorafenib in pancreatic cancer cells. AAPS J 15:78–84

    Article  PubMed  CAS  Google Scholar 

  23. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 5:649–659

    Article  PubMed  CAS  Google Scholar 

  24. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3 K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11:32–50

    Article  PubMed  CAS  Google Scholar 

  25. Ma WW, Adjei AA (2009) Novel agents on the horizon for cancer therapy. CA Cancer J Clin 59:111–137

    Article  PubMed  Google Scholar 

  26. Konings IR, Verweij J, Wiemer EA, Sleijfer S (2009) The applicability of mTOR inhibition in solid tumors. Curr Cancer Drug Targ 9:439–450

    Article  CAS  Google Scholar 

  27. Lasithiotakis KG, Sinnberg TW, Schittek B, Flaherty KT, Kulms D, Maczey E, Garbe C, Meier FE (2008) Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol 128:2013–2023

    Article  PubMed  CAS  Google Scholar 

  28. Molhoek KR, Brautigan DL, Slingluff CL Jr (2005) Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med 3:39

    Article  PubMed  Google Scholar 

  29. Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, Yea S, Peix J, Deniz K, Fiel MI, Thung S, Alsinet C, Tovar V, Mazzaferro V, Bruix J, Roayaie S, Schwartz M, Friedman SL, Llovet JM (2009) Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 51:725–733

    Article  PubMed  CAS  Google Scholar 

  30. Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Halling T, Wellik LE, Witzig TE, Vincent Rajkumar S, Adjei AA, Kumar S (2012) Sorafenib, a multikinase inhibitor, is effective in vitro against non-hodgkin lymphoma and synergizes with the mTOR inhibitor rapamycin. Am J Hematol 87:277–283

    Article  PubMed  CAS  Google Scholar 

  31. Saber-Mahloogi H, Morse DE (2005) Pharmacology Review. In: Pharmacology (ed). Center for Drug Evaluation and Research, Rockville

  32. Keating GM, Santoro A (2009) Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69:223–240

    Article  PubMed  CAS  Google Scholar 

  33. Strumberg D, Clark JW, Awada A, Moore MJ, Richly H, Hendlisz A, Hirte HW, Eder JP, Lenz HJ, Schwartz B (2007) Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12:426–437

    Article  PubMed  CAS  Google Scholar 

  34. O’Donnell A, Faivre S, Burris HA 3rd, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595

    Article  PubMed  Google Scholar 

  35. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, Afthinos M, Terracciano L, Djonov V, Dufour JF (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10:1007–1017

    Article  PubMed  CAS  Google Scholar 

  36. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1:248–259

    Article  PubMed  CAS  Google Scholar 

  37. Drevs J (2003) Soluble markers for the detection of hypoxia under antiangiogenic treatment. Anticancer Res 23:1159–1161

    PubMed  CAS  Google Scholar 

  38. Zhu AX, Sahani DV, Duda DG, di Tomaso E, Ancukiewicz M, Catalano OA, Sindhwani V, Blaszkowsky LS, Yoon SS, Lahdenranta J, Bhargava P, Meyerhardt J, Clark JW, Kwak EL, Hezel AF, Miksad R, Abrams TA, Enzinger PC, Fuchs CS, Ryan DP, Jain RK (2009) Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 27:3027–3035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nancy Pyszczynski, Ninfa Straubinger, Rose Pitoniak, and Yang Qu for excellent technical assistance. We are grateful to The Novartis Institutes for Biomedical Research Basel, Switzerland for providing everolimus for animal studies. This work was supported in part by the pilot studies program of the University at Buffalo Clinical and Translational Research Center and the Buffalo Translational Consortium and by grant GM57980 from the National Institutes of Health.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawaskar, D.K., Straubinger, R.M., Fetterly, G.J. et al. Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol 71, 1231–1240 (2013). https://doi.org/10.1007/s00280-013-2117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2117-x

Keywords

Navigation