Skip to main content

Advertisement

Log in

Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Human miR-34c has been reported to be associated with various human malignancies; however, it remains unknown whether miR-34c is involved in chemoresistance in gastric cancer. The aim of this study was to investigate the role of miR-34c in gastric cancer.

Materials and methods

The adenosine triphosphate-based tumor chemosensitivity assay was used to measure drug sensitivity in gastric cancer samples. The expression levels of miRNA were determined by reverse transcriptase polymerase chain reaction (PCR) and those of protein were by Western blot analysis. Luciferase activity assay was used to verify the target genes of miRNAs. MTT assay was used to test the drug-resistant phenotype changes in cancer cells via overregulation of miRNAs. The methylation status of neighboring CpG islands of miR-34c-5p was analyzed by Bisulfite Sequencing PCR and methylation-specific PCR.

Results

Quantitative real-time polymerase chain reaction demonstrated that expression of miR-34c-5p was downregulated in paclitaxel-resistant gastric cancer samples (p < 0.01). Cells derived from gastric cancer tissues with low miR-34c-5p expression and high microtubule-associated protein tau (MAPT) protein expression tended to have increased chemoresistance to paclitaxel in vitro. Luciferase activity assay confirmed that the 3′-UTR of MAPT mRNA contains a functional miR-34c-5p binding site. Overexpression of miR-34c-5p significantly downregulated MAPT protein expression and increased the chemosensitivity of paclitaxel-resistant gastric cancer cells. Further investigation demonstrated that differential methylation of CpG islands neighboring the miR-34c promoter regulated the expression of miR-34c-5p in gastric cancer cell lines.

Conclusions

DNA methylation, dysregulation of miR-34c-5p, and MAPT expression are critical factors in the chemoresistance of gastric cancer to paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-AZA:

5-aza-2′deoxycytidine

MAPT:

Microtubule-associated protein tau

miRNAs:

MicroRNAs

MDR:

Multidrug resistance

qRT-PCR:

Quantitative real-time polymerase chain reaction

SEM:

Standard error of the mean

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Ajani JA, Barthel JS, Bekaii-Saab T, Bentrem DJ, D’Amico TA et al (2010) NCCN gastric cancer panel. Gastric cancer. J Natl Compr Canc Netw 8:378–409

    PubMed  CAS  Google Scholar 

  3. Ajani JA, Moiseyenko VM, Tjulandin S, Majlis A, Constenla M et al (2007) Quality of life with docetaxel plus cisplatin and fluorouracil compared with cisplatin and fluorouracil from a phase III trial for advanced gastric or gastroesophageal adenocarcinoma: the V-325 Study Group. J Clin Oncol 25:3210–3216

    Article  PubMed  CAS  Google Scholar 

  4. Takeyoshi I, Makita F, Tanahashi Y, Iwazaki S, Ogawa T et al (2011) A phase II study of weekly paclitaxel and doxifluridine combination chemotherapy for advanced/recurrent gastric cancer. Anticancer Res 31:287–291

    PubMed  CAS  Google Scholar 

  5. Ludwig AH, Kupryjañczyk J (2006) Does MDR-1 G2677T/A polymorphism really associate with ovarian cancer response to paclitaxel chemotherapy? Clin Cancer Res 12:6204

    Article  PubMed  CAS  Google Scholar 

  6. Gao J, Lu M, Yu JW, Li YY, Shen L (2011) Thymidine phosphorylase/β-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. BMC Cancer 11:177

    Article  PubMed  CAS  Google Scholar 

  7. Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3:1–19

    Article  PubMed  CAS  Google Scholar 

  8. Wagner P, Wang B, Clark E, Lee H, Rouzier R, Pusztai L (2005) Microtubule-associated protein (MAP)-Tau: a novel mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4:1149–1152

    Article  PubMed  CAS  Google Scholar 

  9. Li QQ, Cao XX, Xu JD, Chen Q, Wang WJ et al (2009) The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel. Cell Mol Life Sci 66:504–515

    Article  PubMed  CAS  Google Scholar 

  10. Ouzier R, Rajan R, Wagner P, Hess KR, Gold DL et al (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102:8315–8320

    Article  Google Scholar 

  11. Smoter M, Bodnar L, Duchnowska R, Stec R, Grala B et al (2011) The role of Tau protein in resistance to paclitaxel. Cancer Chemother Pharmacol 68:553–557

    Article  PubMed  CAS  Google Scholar 

  12. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

    PubMed  CAS  Google Scholar 

  13. Mimori K, Sadanaga N, Yoshikawa Y, Ishikawa K, Hashimoto M et al (2006) Reduced tau expression in gastric cancer can identify candidates for successful paclitaxel treatment. Br J Cancer 94:1894–1897

    Article  PubMed  CAS  Google Scholar 

  14. Zheng T, Wang J, Chen X, Liu L (2010) Role of microRNA in anticancer drug resistance. Int J Cancer 126:2–10

    Article  PubMed  CAS  Google Scholar 

  15. Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46:298–311

    Article  PubMed  CAS  Google Scholar 

  16. Ma J, Dong C, Ji C (2010) MicroRNA and drug resistance. Cancer Gene Ther 17:523–531

    Article  PubMed  CAS  Google Scholar 

  17. Lee Rosalind C, Feinbaum Rhonda L, Ambros Victor (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  18. Sarkar Fazlul H, Li Yiwei, Wang Zhiwei, Kong Dejuan et al (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13:57–66

    Article  PubMed  CAS  Google Scholar 

  19. Holleman A, Chung I, Olsen RR, Kwak B, Mizokami A et al (2011) miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 30:4386–4398

    Article  PubMed  CAS  Google Scholar 

  20. Brabletz T (2012) MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11:215–216

    Article  PubMed  CAS  Google Scholar 

  21. Cannell IG, Bushell M (2010) Regulation of Myc by miR-34c: a mechanism to prevent genomic instability? Cell Cycle 9:2726–2730

    Article  PubMed  CAS  Google Scholar 

  22. Hagman Z, Larne O, Edsjö A, Bjartell A, Ehrnström RA et al (2010) miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127:2768–2776

    Article  PubMed  CAS  Google Scholar 

  23. Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G et al (2012) miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 27. doi:10.1038/onc.2012.51

  24. Kurbacher CM, Cree IA (2005) Chemosensitivity testing using microplate adenosine triphosphate-based luminescence measurements. Methods Mol Med 110:101–120

    PubMed  CAS  Google Scholar 

  25. Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249

    Article  PubMed  CAS  Google Scholar 

  26. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11:93–109

    Article  PubMed  CAS  Google Scholar 

  27. Guntur VP, Waldrep JC, Guo JJ, Selting K, Dhand R (2010) Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro. Anticancer Res 30:3557–3564

    PubMed  CAS  Google Scholar 

  28. Sharma N, Ramachandran S, Bowers M, Yegappan M, Brown R et al (2000) Multiple factors other than p53 influence colon cancer sensitivity to paclitaxel. Cancer Chemother Pharmacol 46:329–337

    Article  PubMed  CAS  Google Scholar 

  29. Ikeda H, Taira N, Hara F, Fujita T, Yamamoto H (2010) The estrogen receptor influences microtubule-associated protein tau (MAPT) expression and the selective estrogen receptor inhibitor fulvestrant downregulates MAPT and increases the sensitivity to taxane in breast cancer cells. Breast Cancer Res 12:R43

    Article  PubMed  Google Scholar 

  30. Morris PG, Fornier MN (2008) Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 14:7167–7172

    Article  PubMed  CAS  Google Scholar 

  31. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL et al (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102:8315–8320

    Article  PubMed  CAS  Google Scholar 

  32. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z (2012) MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene doi:10.1038/onc.2012.432

  33. He C, Xiong J, Xu X, Lu W, Liu L (2009) Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun 388:35–40

    Article  PubMed  CAS  Google Scholar 

  34. Agirre X, Martínez-Climent JA, Odero MD, Prósper F (2012) Epigenetic regulation of miRNA genes in acute leukemia. Leukemia 26:395–403

    Article  PubMed  CAS  Google Scholar 

  35. Hata A, Davis BN (2011) Regulation of pri-miRNA processing through Smads. Adv Exp Med Biol 700:15–27

    Article  PubMed  Google Scholar 

  36. Kim NH, Kim HS, Kim NG, Lee I, Choi HS (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 4:ra71

    Article  PubMed  Google Scholar 

  37. Wong MY, Yu Y, Walsh WR, Yang JL (2011) microRNA-34 family and treatment of cancers with mutant or wild-type p53. Int J Oncol 38:1189–1195

    Article  PubMed  CAS  Google Scholar 

  38. Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T et al (2011) Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res 17:4965–4974

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Xueting Cai and Dr Wuguang Lu (Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine) for their kind help and suggestions in this study. This work was supported by a grant from the National Natural Science Foundation of China (No. 81171908).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Cao or Ping Liu.

Additional information

Peng Cao and Ping Liu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Huang, M., Lu, M. et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol 71, 1159–1171 (2013). https://doi.org/10.1007/s00280-013-2108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2108-y

Keywords

Navigation