Skip to main content

Advertisement

Log in

(−)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of (−)-epigallocatechin-3-gallate (EGCG) on human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer (NSCLC) cells and the underlying mechanisms.

Methods

NSCLC cells (A549 and NCI-H460) transfected with EGFP plasmids containing HPV-16 E6 or E7 oncogene were treated with different concentrations of EGCG for 16 h. The effects of EGCG on angiogenesis in vitro and in vivo were observed. The expression of HIF-1α, p-Akt, and p-ERK1/2 proteins in NSCLC cells was analyzed by Western blot. The levels of HIF-1α mRNA in NSCLC cells were detected by real-time RT-PCR. The concentration of VEGF and IL-8 in the conditioned media was determined by ELISA. HIF-1α, VEGF, and CD31 expression in A549 xenografted tumors of nude mice was analyzed by immunohistochemistry.

Results

HPV-16 E6 and E7 oncoproteins HIF-1α-dependently promoted angiogenesis in vitro and in vivo, which was inhibited by EGCG. Mechanistically, EGCG inhibited HPV-16 oncoprotein-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression in NSCLC cells. Additionally, 50 and 100 μmol/L of EGCG significantly reduced the secretion of VEGF and IL-8 proteins induced by HPV-16 E7 oncoprotein in NSCLC A549 cells. Meanwhile, HPV-16 E6 and E7 oncoproteins HIF-1α-dependently enhanced Akt activation in A549 cells, which was suppressed by EGCG. Furthermore, EGCG inhibited HPV-16 oncoprotein-induced HIF-1α and HIF-1α-dependent VEGF and CD31 expression in A549 xenografted tumors.

Conclusions

EGCG inhibited HPV-16 oncoprotein-induced angiogenesis conferred by NSCLC through the inhibition of HIF-1α protein expression and HIF-1α-dependent expression of VEGF, IL-8, and CD31 as well as activation of Akt, suggesting that HIF-1α may be a potential target of EGCG against HPV-related NSCLC angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deleuran T, Søgaard M, Frøslev T, Rasmussen TR, Jensen HK, Friis S, Olsen M (2012) Completeness of TNM staging of small-cell and non-small-cell lung cancer in the Danish cancer registry, 2004–2009. Clin Epidemiol 4:39–44

    PubMed  Google Scholar 

  2. Zhang Y, Gu C, Shi H, Zhang A, Kong X, Bao W, Deng D, Ren L, Gu D (2012) Association between C3orf21, TP63 polymorphisms and environment and NSCLC in never-smoking Chinese population. Gene 497:93–97

    Article  PubMed  CAS  Google Scholar 

  3. Yano T, Haro A, Shikada Y, Maruyama R, Maehara Y (2011) Non-small cell lung cancer in never smokers as a representative non-smoking-associated lung cancer’: epidemiology and clinical features. Int J Clin Oncol 16:287–293

    Article  PubMed  CAS  Google Scholar 

  4. Ciotti M, Giuliani L, Ambrogi V, Ronci C, Benedetto A, Mineo TC, Syrjänen K, Favalli C (2006) Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol Rep 16:183–189

    PubMed  CAS  Google Scholar 

  5. Srinivasan M, Taioli E, Ragin CC (2009) Human papillomavirus type 16 and 18 in primary lung cancers—a meta-analysis. Carcinogenesis 30:1722–1728

    Article  PubMed  CAS  Google Scholar 

  6. Baba M, Castillo A, Koriyama C, Yanagi M, Matsumoto H, Natsugoe S, Shuyama KY, Khan N, Higashi M, Itoh T, Eizuru Y, Aikou T, Akiba S (2010) Human papillomavirus is frequently detected in gefitinib-responsive lung adenocarcinomas. Oncol Rep 23:1085–1092

    PubMed  CAS  Google Scholar 

  7. Aguayo F, Anwar M, Koriyama C, Castillo A, Sun Q, Morewaya J, Eizuru Y, Akiba S (2010) Human papillomavirus-16 presence and physical status in lung carcinomas from Asia. Infect Agent Cancer 5:20–26

    Article  PubMed  Google Scholar 

  8. Zhang J, Wang T, Han M, Yang ZH, Liu LX, Chen Y, Zhang L, Hu HZ, Xi MR (2010) Variation of Human papillomavirus 16 in cervical and lung cancers in Sichuan, China. Acta Virol 54:247–253

    Article  PubMed  CAS  Google Scholar 

  9. Krikelis D, Tzimagiorgis G, Georgiou E, Destouni C, Agorastos T, Haitoglou C, Kouidou S (2010) Frequent presence of incomplete HPV16 E7 ORFs in lung carcinomas: memories of viral infection. J Clin Virol 49:169–174

    Article  PubMed  CAS  Google Scholar 

  10. Joh J, Jenson AB, Moore GD, Rezazedeh A, Slone SP, Ghim SJ, Kloecker GH (2010) Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer. Exp Mol Pathol 89:222–226

    Article  PubMed  CAS  Google Scholar 

  11. Li G, He L, Zhang E, Shi J, Zhang Q, Le AD, Zhou K, Tang X (2011) Overexpression of human papillomavirus (HPV) type 16 oncoproteins promotes angiogenesis via enhancing HIF-1 alpha and VEGF expression in non-small cell lung cancer cells. Cancer Lett 311:160–170

    Article  PubMed  CAS  Google Scholar 

  12. Yohena T, Yoshino I, Takenaka T, Kameyama T, Ohba T, Kuniyoshi Y, Maehara Y (2009) Upregulation of hypoxia-inducible factor-1alpha mRNA and its clinical significance in non-small cell lung cancer. J Thorac Oncol l4:284–290

    Article  Google Scholar 

  13. Zuo S, Ji Y, Wang J, Guo J (2008) Expression and clinical implication of HIF-1alpha and VEGF-C in non-small cell lung cancer. J Huazhong Univ Sci Technol Med Sci 28:674–676

    Article  PubMed  Google Scholar 

  14. Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1 alpha. Cancer Res 69:1624–1632

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Bernauer AM, Yingling CM, Belinsky SA (2012) HIF1α regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis 33:1187–1192

    Article  PubMed  CAS  Google Scholar 

  16. Kuo WH, Shih CM, Lin CW, Cheng WE, Chen SC, Chen W, Lee YL (2012) Association of hypoxia inducible factor-1α polymorphisms with susceptibility to non-small-cell lung cancer. Transl Res 159:42–50

    Article  PubMed  CAS  Google Scholar 

  17. Jackson AL, Zhou B, Kim WY (2010) HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets 14:1047–1057

    Article  PubMed  CAS  Google Scholar 

  18. Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    PubMed  CAS  Google Scholar 

  19. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 32:1881–1889

    Article  PubMed  CAS  Google Scholar 

  20. Shim JH, Su ZY, Chae JI, Kim DJ, Zhu F, Ma WY, Bode AM, Yang CS, Dong Z (2010) Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev Res (Phila) 3:670–679

    Article  CAS  Google Scholar 

  21. Yamauchi R, Sasaki K, Yoshida K (2009) Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Toxicol In Vitro 23:834–839

    Article  PubMed  CAS  Google Scholar 

  22. Sadava D, Whitlock E, Kane SE (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360:233–237

    Article  PubMed  CAS  Google Scholar 

  23. Deng YT, Lin JK (2011) EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. Fertil Steril 96:1021–1028

    Article  Google Scholar 

  24. Xu H, Becker CM, Lui WT, Chu CY, Davis TN, Kung AL, Birsner AE, D’Amato RJ, Wai Man GC, Wang CC (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. J Agric Food Chem 59:13318–13327

    Article  Google Scholar 

  25. Shimizu M, Shirakami Y, Sakai H, Yasuda Y, Kubota M, Adachi S, Tsurumi H, Hara Y, Moriwaki H (2010) (−)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem Biol Interact 185:247–252

    Article  PubMed  CAS  Google Scholar 

  26. Zhu BH, Chen HY, Zhan WH, Wang CY, Cai SR, Wang Z, Zhang CH, He YL (2011) (−)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer. World J Gastroenterol 17:2315–2325

    Article  PubMed  CAS  Google Scholar 

  27. Tudoran O, Soritau O, Balacescu O, Balacescu L, Braicu C, Rus M, Gherman C, Virag P, Irimie F, Berindan-Neagoe I (2012) Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J Cell Mol Med 16:520–530

    Article  PubMed  CAS  Google Scholar 

  28. Tang FY, Nguyen N, Meydani M (2003) Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule. Int J Cancer 106:871–878

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le AD (2006) Green tea extract and (−)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 5:1227–1238

    Article  PubMed  CAS  Google Scholar 

  30. Thomas R, Kim MH (2005) Epigallocatechin gallate inhibits HIF-1alpha degradation in prostate cancer cells. Biochem Biophys Res Commun 334:543–548

    Article  PubMed  CAS  Google Scholar 

  31. Manalo DJ, Baek JH, Buehler PW, Struble E, Abraham B, Alayash AI (2011) Inactivation of prolyl hydroxylase domain (PHD) protein by epigallocatechin (EGCG) stabilizes hypoxia-inducible factor (HIF-1α) and induces hepcidin (Hamp) in rat kidney. Biochem Biophys Res Commun 416:421–426

    Article  PubMed  CAS  Google Scholar 

  32. Wang H, Bian S, Yang CS (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 32:1881–1889

    Article  PubMed  CAS  Google Scholar 

  33. Romon R, Adriaenssens E, Lagadec C, Germain E, Hondermarck H, Le Bourhis X (2010) Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol Cancer 9:157–169

    Article  PubMed  Google Scholar 

  34. Menges CW, Baglia LA, Lapoint R, McCance DJ (2006) Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res 66:5555–5559

    Article  PubMed  CAS  Google Scholar 

  35. Kim SH, Juhnn YS, Kang S, Park SW, Sung MW, Bang YJ, Song YS (2006) Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ERK1, 2 and PI3K/Akt. Cell Mol Life Sci 63:930–938

    Article  PubMed  CAS  Google Scholar 

  36. Das M, Wakelee H (2012) Targeting VEGF in lung cancer. Expert Opin Ther Targets 16:395–406

    Article  PubMed  CAS  Google Scholar 

  37. Shojaei F (2012) Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 320:130–137

    Article  PubMed  CAS  Google Scholar 

  38. Hu Y, Liu J, Huang H (2012) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem. doi:10.1002/jcb.24390. (Epub ahead of print)

  39. Domingo DS, Camouse MM, Hsia AH, Matsui M, Maes D, Ward NL, Cooper KD, Baron ED (2010) Anti-angiogenic effects of epigallocatechin-3-gallate in human skin. Int J Clin Exp Pathol 3:705–709

    PubMed  CAS  Google Scholar 

  40. Zhu Z, Wang Y, Liu Z, Wang F, Zhao Q (2012) Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1. Oncol Rep 27:1567–1572

    PubMed  CAS  Google Scholar 

  41. Shankar S, Marsh L, Srivastava RK (2013) EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 372:83–94

    Article  PubMed  CAS  Google Scholar 

  42. Syed DN, Afaq F, Kweon MH, Hadi N, Bhatia N, Spiegelman VS, Mukhtar H (2007) Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26:673–682

    Article  PubMed  CAS  Google Scholar 

  43. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD (2007) Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res 13:2568–2576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China, 81073103 and 30872944 (To X. Tang), Guangdong Natural Science Foundation, S2012010008232 (To X. Tang), Science and Technology of Guangdong Province, 2009B030801330 (To X. Tang), the Specialized Foundation for Introduced Talents of Guangdong Province Higher Education, 2050205 (To X. Tang), Zhanjiang Municipal Governmental Specific Financial Fund Allocated for Competitive Scientific and Technological Projects, 2012C0303-56 (To X. Tang), and Science and Technology Innovation Fund of Guangdong Medical College, STIF201105 (To K. Zhou).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Tang.

Additional information

Li He and Erying Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Zhang, E., Shi, J. et al. (−)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother Pharmacol 71, 713–725 (2013). https://doi.org/10.1007/s00280-012-2063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-2063-z

Keywords

Navigation