Skip to main content

Advertisement

Log in

A phase I study of MN-029 (denibulin), a novel vascular-disrupting agent, in patients with advanced solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

MN-029 (denibulin HCl) is a novel vascular-disrupting agent that reversibly inhibits microtubule assembly, resulting in disruption of the cytoskeleton of tumor vascular endothelial cells. This study determined the safety, pharmacokinetics, and acute anti-vascular effects of MN-029.

Methods

Patients were treated with escalating doses of MN-029 (4.0–225 mg/m2) administered IV at 3-week intervals. This first-in-human study followed an accelerated titration design, with intra-patient dose escalation. Plasma samples were assayed to determine PK parameters. DCE-MRI scans were acquired at baseline and at 6–8 h post-dose.

Results

Thirty-four patients received 151 infusions of MN-029. The most common toxicities of MN-029 included nausea and vomiting (which appeared to be dose related), diarrhea, fatigue, headache, and anorexia. No clinically significant myelotoxicity, stomatitis or alopecia was observed. There was no evidence of cumulative toxicity in patients receiving multiple courses of therapy. The cohort at 180 mg/m2 was expanded to six patients due to a reversible episode of acute coronary ischemia, without sequelae and with preservation of myocardial function. Two dose-limiting toxicities occurred at 225 mg/m2, a transient ischemic attack and grade 3 transaminitis, thus ending dose escalation. Pharmacokinetic data indicated dose-related increases in C max and AUC values, although substantial inter-subject variability was observed. No objective responses were noted; however, five patients had stable disease ≥6 months. A significant linear correlation was found between reduction in K trans and exposure to MN-029.

Conclusions

MN-029 was generally well tolerated and showed decrease in tumor vascular parameters. The maximum tolerated dose was 180 mg/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  2. Ratain MJ, Eisen T, Stadler WM et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    Article  PubMed  CAS  Google Scholar 

  3. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  PubMed  CAS  Google Scholar 

  4. Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  5. Siemann DW, Bibby MC, Dark GG et al (2005) Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11:416–420

    PubMed  CAS  Google Scholar 

  6. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  7. Cooney MM, van Heeckeren W, Bhakta S et al (2006) Drug insight: vascular disrupting agents and angiogenesis–novel approaches for drug delivery. Nat Clin Pract Oncol 3:682–692

    Article  PubMed  CAS  Google Scholar 

  8. Thorpe PE, Chaplin DJ, Blakey DC (2003) The first international conference on vascular targeting: meeting overview. Cancer Res 63:1144–1147

    PubMed  CAS  Google Scholar 

  9. Tozer GM, Prise VE, Wilson J et al (2001) Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 61:6413–6422

    PubMed  CAS  Google Scholar 

  10. Davis PD, Dougherty GJ, Blakey DC et al (2002) ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 62:7247–7253

    PubMed  CAS  Google Scholar 

  11. Dowlati A, Robertson K, Cooney M et al (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62:3408–3416

    PubMed  CAS  Google Scholar 

  12. Galbraith SM, Rustin GJ, Lodge MA et al (2002) Effects of 5, 6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20:3826–3840

    Article  PubMed  CAS  Google Scholar 

  13. Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842

    Article  PubMed  CAS  Google Scholar 

  14. Collins JM (2003) Functional imaging in phase I studies: decorations or decision making? J Clin Oncol 21:2807–2809

    Article  PubMed  Google Scholar 

  15. Evelhoch JL, LoRusso PM, He Z et al (2004) Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res 10:3650–3657

    Article  PubMed  CAS  Google Scholar 

  16. Parkins CS, Dennis MF, Stratford MR et al (1995) Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res 55:6026–6029

    PubMed  CAS  Google Scholar 

  17. Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539

    Article  PubMed  CAS  Google Scholar 

  18. MN-029 Investigator’s brochure in Medicinova Inc (2004)

  19. Shi W, Siemann DW (2005) Preclinical studies of the novel vascular disrupting agent MN-029. Anticancer Res 25:3899–3904

    PubMed  CAS  Google Scholar 

  20. Simon R, Freidlin B, Rubinstein L et al (1997) Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst 89:1138–1147

    Article  PubMed  CAS  Google Scholar 

  21. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  22. Ashton E, McShane T, Evelhoch J (2005) Inter-operator variability in perfusion assessment of tumors in MRI using automated AIF detection. LNCS 3749:451–458

    Google Scholar 

  23. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New York, pp 127–129

    Google Scholar 

  24. Leach M, Brindle K, Evelhoch J et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  25. Evelhoch J (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  26. Dark GG, Hill SA, Prise VE et al (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57:1829–1834

    PubMed  CAS  Google Scholar 

  27. Jameson MB, Thompson PI, Baguley BC et al (2003) Clinical aspects of a phase I trial of 5, 6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent. Br J Cancer 88:1844–1850

    Article  PubMed  CAS  Google Scholar 

  28. Rustin GJ, Galbraith SM, Anderson H et al (2003) Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 21:2815–2822

    Article  PubMed  CAS  Google Scholar 

  29. Beerepoot LV, Radema SA, Witteveen EO et al (2006) Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol 24:1491–1498

    Article  PubMed  CAS  Google Scholar 

  30. van Heeckeren WJ, Bhakta S, Ortiz J et al (2006) Promise of new vascular-disrupting agents balanced with cardiac toxicity: is it time for oncologists to get to know their cardiologists? J Clin Oncol 24:1485–1488

    Article  PubMed  Google Scholar 

  31. Anderson HL, Yap JT, Miller MP et al (2003) Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 21:2823–2830

    Article  PubMed  CAS  Google Scholar 

  32. Cooney MM, Radivoyevitch T, Dowlati A et al (2004) Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer. Clin Cancer Res 10:96–100

    Article  PubMed  CAS  Google Scholar 

  33. Chaplin DJ, Hill SA (2002) The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys 54:1491–1496

    Article  PubMed  CAS  Google Scholar 

  34. Shaked Y, Ciarrocchi A, Franco M et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787

    Article  PubMed  CAS  Google Scholar 

  35. Mancuso P, Colleoni M, Calleri A et al (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108:452–459

    Article  PubMed  CAS  Google Scholar 

  36. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  37. Solovey A, Lin Y, Browne P et al (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337:1584–1590

    Article  PubMed  CAS  Google Scholar 

  38. Beerepoot LV, Mehra N, Vermaat JS et al (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–145

    Article  PubMed  CAS  Google Scholar 

  39. Mancuso P, Burlini A, Pruneri G et al (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661

    Article  PubMed  CAS  Google Scholar 

  40. Monestiroli S, Mancuso P, Burlini A et al (2001) Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 61:4341–4344

    PubMed  CAS  Google Scholar 

  41. Shaked Y, Bertolini F, Man S et al (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111

    PubMed  CAS  Google Scholar 

  42. Shi W, Siemann DW (2005) Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo 19:1045–1050

    PubMed  CAS  Google Scholar 

  43. Ashton E, Raunig D, Ng C et al (2008) Scan-rescan variability in perfusion assessment of tumors in MRI using both model and data-derived arterial input function. J Magn Reson Imaging 28:791–796

    Article  PubMed  Google Scholar 

  44. Rijpkema M, Kaanders J, Joosten F et al (2001) Method for quantitative mapping of dynamic MRI contrast agent enhancement in human tumors. J Magn Reson Imaging 14:457–463

    Article  PubMed  CAS  Google Scholar 

  45. Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18:189–197

    Article  PubMed  CAS  Google Scholar 

  46. Garon EB, Kabbinavar FF, Neidhart JA et al. (2010) Randomized phase II trial of a tumor vascular disrupting agent fosbretabulin tromethamine (CA4P) with carboplatin (C), paclitaxel (P), and bevacizumab (B) in stage IIIb/IV nonsquamous non-small cell lung cancer (NSCLC): The FALCON trial. J Clin Oncol 28:7s (abstr 7587)

    Google Scholar 

  47. Nathan PD, Judson I, Padhani A et al. (2008) A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J Clin Oncol 26 (abstr 3550)

  48. Traynor AM, Gordon MS, Alberti D et al (2010) A dose escalation, safety, and tolerability study of MN-029 in patients with advanced solid tumors. Invest New Drugs 28:509–515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ana Ruiz-Garcia and Louis Lazo Radulovic for helpful discussions and technical assistance. This work was supported by MediciNova, Inc.

Conflicts of interest

Alejandro D Ricart is compensated as an employee of Pfizer Inc and owns stock/stock options in Pfizer Inc. Edward A. Ashton, Matthew M. Cooney, John Sarantopoulos, Joanna M. Brell, Gerardo Medina, Angela Zambito: no disclosures. Maria A. Feldman, Kale E. Ruby, Kazuko Matsuda, Mark S. Munsey are compensated as employees of MediciNova Inc. Anthony W. Tolcher’s institution has received research funding from Abbott, Ambit, Amgen, Array BioPharma, Astellas, AVEO/Schering/Plough, Azaya Therapeutics, Bayer, Biogen Idec, BiPar, Bristol-Myers Squibb, Calando, Cougar, Dendreon, Eli Lilly, Enzon, Exelixis, Five Prime, Genentech, Genta, Glaxo Smith Kline, Hana Biosciences, Hoffman-La Roche, Merck, Merrimack, MethylGene, Myriad, Nektar, Nerviano, Proteolix, Sanofi-Aventis, Spectrum, Symphogen; he has also received payment for consulting and advisory agreements from Abbott, Abgenomics, Abraxis, ACT Biotech, Actavis, Adnexus, Adventrx Pharmaceuticals, Ambit, Amgen, Ariad Pharmaceuticals, Arresto Biosciences, Astellas, AstraZeneca, AVEO, Bayer, Bind Bio, Biogen Idec, BiPar, Calando, Calistoga, Chemokine, Curis, Daiichi Sankyo, Dendreon, Dicerna, Eli Lilly, EMTx, Endo, Enzon, Exelixis, Five Prime, Genentech, Genta, Geron, Glaxo Smith Kline, HUYA Bioscience, Intellikine, Johnson & Johnson, Merck, MethylGene, Micromet, Myriad, Nektar, Nerviano, Neumedicines, Onyx, Otsuka, Pfizer, ProNai, Regeneron, Sanofi-Aventis, Santaris, Schering Plough, Seattle Genetics, Semophore, Spectrum, Supergen, Symphogen, Vaccinex, and Veeda. Scot C. Remick has received a clinical research grant from MediciNova Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D. Ricart.

Additional information

Presented in part at the 42nd Annual Meeting of the American Society of Clinical Oncology, June 2–6, 2006, Atlanta, GA and at the 18th European Organization for Research and Treatment of Cancer-National Cancer Institute-American Association for Cancer Research Symposium on Molecular Targets and Cancer Therapeutics, November 7–10, 2006, Prague, Czech Republic.

Appendix

Appendix

See Table 6.

Table 6 Validated LC–MS/MS method summary for the simultaneous quantitation of MN-029, MN-022, and N-acetyl MN-022 in human plasma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricart, A.D., Ashton, E.A., Cooney, M.M. et al. A phase I study of MN-029 (denibulin), a novel vascular-disrupting agent, in patients with advanced solid tumors. Cancer Chemother Pharmacol 68, 959–970 (2011). https://doi.org/10.1007/s00280-011-1565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1565-4

Keywords

Navigation