Skip to main content

Advertisement

Log in

Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the anti-hypertensive drug losartan (LOS).

Results

We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumor-associated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C.

Conclusions

Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

LOS:

Losartan

MVD:

Microvascular density

RAS:

Renin–angiotensin system

References

  1. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  2. Brunner HR, Chang P, Wallach R et al (1972) Angiotensin II vascular receptors: their avidity in relationship to sodium balance, the autonomic nervous system, and hypertension. J Clin Invest 51:58–67

    Article  CAS  PubMed  Google Scholar 

  3. Tamarat R, Silvestre JS, Durie M et al (2002) Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest 82:747–756

    CAS  PubMed  Google Scholar 

  4. Bell L, Madri JA (1990) Influence of the angiotensin system on endothelial and smooth muscle cell migration. Am J Pathol 137:7–12

    CAS  PubMed  Google Scholar 

  5. Nadal JA, Scicli GM, Carbini LA et al (1999) Angiotensin II and retinal pericytes migration. Biochem Biophys Res Commun 266:382–385

    Article  CAS  PubMed  Google Scholar 

  6. Marshall RP, McAnulty RJ, Laurent GJ (2000) Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med 161:1999–2004

    CAS  PubMed  Google Scholar 

  7. Otani A, Takagi H, Oh H et al (2000) Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest Ophthalmol Vis Sci 41:1192–1199

    CAS  PubMed  Google Scholar 

  8. Morrell NW, Upton PD, Kotecha S et al (1999) Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors. Am J Physiol 277:L440–L448

    CAS  PubMed  Google Scholar 

  9. Sasaki K, Murohara T, Ikeda H et al (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109:603–611

    CAS  PubMed  Google Scholar 

  10. Timmermans PB, Wong PC, Chiu AT et al (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    CAS  PubMed  Google Scholar 

  11. Sauter M, Cohen CD, Wornle M et al (2007) ACE inhibitor and AT1-receptor blocker attenuate the production of VEGF in mesothelial cells. Perit Dial Int 27:167–172

    CAS  PubMed  Google Scholar 

  12. Imai N, Hashimoto T, Kihara M et al (2007) Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. Lab Invest 87:189–198

    Article  CAS  PubMed  Google Scholar 

  13. Krishnamoorthy S, Honn KV (2006) Inflammation and disease progression. Cancer Metastasis Rev 25:481–491

    Article  PubMed  Google Scholar 

  14. Triggle DJ (1995) Angiotensin II receptor antagonism: losartan—sites and mechanisms of action. Clin Ther 17:1005–1030

    Article  CAS  PubMed  Google Scholar 

  15. Gonçalves AR, Fujihara CK, Mattar AL et al (2004) Renal expression of COX-2, ANG II, and AT1 receptor in remnant kidney: strong renoprotection by therapy with losartan and a nonsteroidal anti-inflammatory. Am J Physiol Renal Physiol 286:F945–F954

    Article  PubMed  Google Scholar 

  16. Fujihara CK, Velho M, Malheiros DM et al (2005) An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int 67:1913–1924

    Article  CAS  PubMed  Google Scholar 

  17. Rivera E, Arrieta O, Guevara P et al (2001) AT1 receptor is present in glioma cells; its blockage reduces the growth of rat glioma. Br J Cancer 85:1396–1399

    Article  CAS  PubMed  Google Scholar 

  18. Fujita M, Hayashi I, Yamashina S et al (2005) Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis 26:271–279

    Article  CAS  PubMed  Google Scholar 

  19. Lever AF, Hole DJ, Gillis CR et al (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184

    Article  CAS  PubMed  Google Scholar 

  20. Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16:293–299

    Article  CAS  PubMed  Google Scholar 

  21. Christian JB, Lapane KL, Hume AL et al (2008) Association of ACE inhibitors and angiotensin receptor blockers with keratinocyte cancer prevention in the randomized VATTC trial. J Natl Cancer Inst 100:1223–1232

    Article  CAS  PubMed  Google Scholar 

  22. Wilop S, von Hobe S, Crysandt M et al (2009) Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol 135:1429–1435

    Article  CAS  PubMed  Google Scholar 

  23. de Melo FH, Butera D, Medeiros RS et al (2007) Biological applications of a chimeric probe for the assessment of galectin-3 ligands. J Histochem Cytochem 55:1015–1026

    Article  PubMed  Google Scholar 

  24. Coutinho EL, Andrade LN, Chammas R et al (2007) Anti-tumor effect of endostatin mediated by retroviral gene transfer in mice bearing renal cell carcinoma. Faseb J 21:3153–3161

    Article  CAS  PubMed  Google Scholar 

  25. Rafii S, Lyden D, Benezra R et al (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  CAS  PubMed  Google Scholar 

  26. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    CAS  PubMed  Google Scholar 

  27. Ino K, Shibata K, Kajiyama H et al (2006) Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br J Cancer 94:552–560

    Article  CAS  PubMed  Google Scholar 

  28. Arrieta O, Pineda-Olvera B, Guevara-Salazar P et al (2008) Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer 99:160–166

    Article  CAS  PubMed  Google Scholar 

  29. Egami K, Murohara T, Shimada T et al (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67–75

    CAS  PubMed  Google Scholar 

  30. Shen XZ, Li P, Weiss D et al (2007) Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am J Pathol 170:2122–2134

    Article  CAS  PubMed  Google Scholar 

  31. Seghezzi G, Patel S, Ren CJ et al (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    Article  CAS  PubMed  Google Scholar 

  32. Maragoudakis ME, Tsopanoglou NE, Andriopoulou P (2002) Mechanism of thrombin-induced angiogenesis. Biochem Soc Trans 30:173–177

    Article  CAS  PubMed  Google Scholar 

  33. Tsopanoglou NE, Maragoudakis ME (1999) On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem 274:23969–23976

    Article  CAS  PubMed  Google Scholar 

  34. Fong GH, Rossant J, Gertsenstein M et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  CAS  PubMed  Google Scholar 

  35. Dumont DJ, Fong GH, Puri MC et al (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203:80–92

    CAS  PubMed  Google Scholar 

  36. Olsen MW, Ley CD, Junker N et al (2006) Angiopoietin-4 inhibits angiogenesis and reduces interstitial fluid pressure. Neoplasia 8:364–372

    Article  CAS  PubMed  Google Scholar 

  37. Otani A, Takagi H, Oh H et al (2001) Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 50:867–875

    Article  CAS  PubMed  Google Scholar 

  38. Oh SJ, Jeltsch MM, Birkenhager R et al (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109

    Article  CAS  PubMed  Google Scholar 

  39. Pepper MS, Mandriota SJ, Jeltsch M et al (1998) Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol 177:439–452

    Article  CAS  PubMed  Google Scholar 

  40. Witmer AN, van Blijswijk BC, Dai J, Hofman P et al (2001) VEGFR-3 in adult angiogenesis. J Pathol 195:490–497

    Article  CAS  PubMed  Google Scholar 

  41. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124:224–241

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Cai SR, Zhang CH et al (2008) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers on lymphangiogenesis of gastric cancer in a nude mouse model. Chin Med J (Engl) 121:2167–2171

    CAS  Google Scholar 

  43. Boehm T, Folkman J, Browder T et al (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Zuch CL, Lin YS et al (2008) Pharmacokinetics and safety of bevacizumab administered in combination with cisplatin and paclitaxel in cynomolgus monkeys. Cancer Chemother Pharmacol 61:607–614

    Article  CAS  PubMed  Google Scholar 

  45. Pande A, Lombardo J, Spangenthal E et al (2007) Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 27:3465–3470

    CAS  PubMed  Google Scholar 

  46. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed  Google Scholar 

  47. Garcia AA, Hirte H, Fleming G et al (2008) Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol 26:76–82

    Article  CAS  PubMed  Google Scholar 

  48. Arafat HA, Gong Q, Chipitsyna G et al (2007) Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 204:996–1005

    Article  PubMed  Google Scholar 

  49. Khakoo AY, Sidman RL, Pasqualini R et al (2008) Does the renin–angiotensin system participate in regulation of human vasculogenesis and angiogenesis? Cancer Res 68:9112–9115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Grants 1998/14247-6, 2006/60200-0) and Conselho Nacional de Desenvolvimento Científico and Ministério da Saúde/DECIT(CNPq, Grants CNPq/DECIT 401030/05-9, 152083/06-5). We thank Prof. A. Colquhoun, Instituto de Ciências Biomédicas da Universidade de São Paulo for providing us both anti-VEGFR1 and anti-VEGFR2 antibodies.

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Chammas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1. Immunolabeling of AT1 receptor in human melanoma.

(A and B) Human tissues labeled with non-immune Ig, as negative control for the reaction with the anti-AT1 R. Arrows in A and B indicate non-stained vessels within the dermis (A) or within a melanoma tissue (B). In C, the anti-AT1 R was used. Note that smooth muscle cells from a large vascular structure stained positively for AT1 R (arrow in C). In D, the interface of a melanoma and the surrounding stroma is depicted. Dashed lines indicate the interface. Small vessels within the stroma were stained with the anti-AT1 R antibodies (arrows in D). Bars indicate 25 μm. (JPG 219 kb)

Supplemental Fig. 2. Murine melanomas also express the AT1 receptor.

Tumor tissues from non-treated mice were carefully excised and RNA extraction was performed. RT-PCR reactions for AT1 receptor (control group, n = 8) were done and representative samples were showed. NO represents a PCR reaction run without adding cDNA. Reverse Transcriptase Polymerase Chain Reactions (RT-PCR) for the murine AT1 receptor were performed as follows. cDNA was synthesized using Superscript II RNase H Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) from 1μg of total RNA derived from murine melanomas. PCR reactions were then performed using specific primers which were designed using Primer3 Input (http://frodo.wi.mit.edu/primer3) and synthesized by IDT Inc. (Coralville, IA, USA). Primers for the murine AT1 receptor were; (1) forward primer, 5′-CAA AGC TTG CTG GCA ATG TA-3′; (2) reverse primer, 5′- AAA CAA GGT TCC TTG CCC TT-3′ (amplification product, 401 pb). Primers for the housekeeping gene, β-actin, were; (1) forward primer, 5′-TGT TAC CAA CTG GGA CGA CA-3′; (2) reverse primer, 5′-CTG GGT CAT CTT TTC ACG GT-3′ (amplification product, 139 pb). The amplification protocol consisted of an initial template denaturation step at 95°C for 5 min, followed by 35 cycles of 15 s at 94°C, 30 s at 60°C, and 60 s at 72°C, and a last primer extension at 72°C for 10 min. The reaction mixtures were subsequently analyzed by 2% agarose gel electrophoresis. (JPG 9 kb)

Supplemental Fig. 3. Immunohistochemical pattern of VEGFR1- and VEGFR2-positive vascular structures and VEGFR1- and VEGFR2-positive infiltrating mononuclear cells.

Sections were incubated with anti-VEGFR1 (A-D) and anti-VEGFR2 (E–H) antibodies followed by secondary-antibody/AP incubation, developed with a suitable chromogen (Fast Red, DAKO) and counterstained with Harris hematoxylin. The images were acquired with a Nikon Eclipse E600 microscope coupled to a Nikon DXM1200F capture system. Note the intense immunostaining for VEGFR1 and VEGFR2 displayed in the vessel walls (A and E, respectively) and infiltrating mononuclear cells (C and G, respectively) in the controls, compared to the weak reactivity and rarely positives structures in tumors from LOS-treated mice (anti-VEGFR1-labeled B and D; anti-VEGFR2-labeled, F and H). Scale bar 10 µm, LOS: tumors from losartan-treated mice. (JPG 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otake, A.H., Mattar, A.L., Freitas, H.C. et al. Inhibition of angiotensin II receptor 1 limits tumor-associated angiogenesis and attenuates growth of murine melanoma. Cancer Chemother Pharmacol 66, 79–87 (2010). https://doi.org/10.1007/s00280-009-1136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1136-0

Keywords

Navigation