Skip to main content

Advertisement

Log in

In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Gemcitabine (GEM) is presently the standard option for the treatment of advanced pancreatic cancer (PC). We investigated the in vitro and in vivo antitumor potential of GEM-loaded PEGylated liposomes (L-GEM) as a novel agent for the treatment of PC. In vitro analysis of antitumor activity against human PC cell lines, BXPC-3 and PSN-1, showed a significant time- and dose-dependent reduction of cell viability following exposure to L-GEM as compared to free GEM [at 72 h, IC50: 0.009 vs. 0.027 μM (P = 0.003) for BXPC-3 and 0.003 vs. 0.009 μM (P < 0.001) for PSN1, respectively]. Confocal laser scanning microscopy demonstrated an effective liposome/cell interaction and internalization process following 3-h cell exposure to L-GEM. The in vivo antitumor activity of L-GEM was investigated in a cohort of SCID mice bearing BxPC-3 or PSN-1 xenografts. Animals were i.p. treated with L-GEM (5 mg/kg), or a threefold increased dose of free GEM (15 mg/kg), or empty liposomes or vehicle, twice a week for 35 days. A significant higher inhibition of tumor growth in mice treated with L-GEM versus free GEM (P = 0.006 and P = 0.004 for BXPC-3 and PSN-1, respectively) or control groups (P = 0.0001), translated in a survival advantage of L-GEM treated animals versus other groups. Pharmacokinetic studies showed enhancement of systemic bioavailability of L-GEM (t 1/2 = 8 h) versus to GEM (t 1/2 = 1.5 h). Our findings demonstrate that L-GEM is an effective agent against PC and exerts higher antitumor activity as compared to free GEM with no appreciable increase in toxicity. These results provide the pre-clinical rational for L-GEM clinical development for the treatment of PC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

Chol:

Cholesterol

CLSM:

Confocal laser scanning microscopy

C max :

Maximum plasmatic concentration

DPPC:

1, 2-Dipalmitoyl-sn-glycero-3-phospocholine monohydrate

DSPE-MPEG 2000:

N-(Carbonyl-methoxypolyethylene glycol-2000)-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine

EPR:

Enhanced permeation and retention

Fluorescein-DHPE:

N-(Fluorescein-5-tiocarbamoyl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt

GEM:

Gemcitabine—2I, 2I-difluorodeoxycytidine

HPLC:

High performance liquid chromatography

L-GEM:

Gemcitabine-loaded pegylated small unilamellar liposomes

PBS:

Phosphate buffer saline solution

PC:

Human pancreatic adenocarcinoma cancer

PEG:

Poly-ethylene glycol

t 1/2 :

Plasma half-life

V d :

Volume of distribution

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Manegold C (2004) Gemcitabine (Gemzar) in non-small cell lung cancer. Expert Rev Anticancer Ther 4:345–360

    Article  PubMed  CAS  Google Scholar 

  3. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498

    PubMed  CAS  Google Scholar 

  4. Moog R, Burger AM, Brandl M, Schuler J, Schubert R, Unger C, Fiebig HH, Massing U (2002) Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemother Pharmacol 49:356–366

    Article  PubMed  CAS  Google Scholar 

  5. Soloman R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. Clin Lymphoma Myeloma 8:21–32

    Article  PubMed  Google Scholar 

  6. Celano M, Schenone S, Cosco D, Navarra M, Puxeddu E, Racanicchi L, Brullo C, Varano E, Alcaro S, Ferretti E, Botta G, Filetti S, Fresta M, Botta M, Russo D (2008) Cytotoxic effects of a novel pyrazolopyrimidine derivative entrapped in liposomes in anaplastic thyroid cancer cells in vitro and in xenograft tumors in vivo. Endocr Relat Cancer 15:499–510

    Article  PubMed  CAS  Google Scholar 

  7. Harasym TO, Cullis PR, Bally MB (1997) Intratumor distribution of doxorubicin following i.v. administration of drug encapsulated in egg phosphatidylcholine/cholesterol liposomes. Cancer Chemother Pharmacol 40:309–317

    Article  PubMed  CAS  Google Scholar 

  8. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743

    PubMed  CAS  Google Scholar 

  9. Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40:75–87

    Article  PubMed  CAS  Google Scholar 

  10. Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16:175–183

    Article  PubMed  CAS  Google Scholar 

  11. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, Yasuda J, Obata K, Kikuchi H, Ishida T, Kiwada H, Harashima H (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200

    Article  PubMed  CAS  Google Scholar 

  12. Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Article  PubMed  CAS  Google Scholar 

  13. Tassone P, Tagliaferri P, Cucinotto I, Lavecchia AM, Leone F, Pietragalla A, Salvino A, Barbieri V, Venuta S (2007) Pegylated liposomal doxorubicin is active in Stewart-Treves syndrome. Ann Oncol 18:959–960

    Article  PubMed  CAS  Google Scholar 

  14. Minisini AM, Andreetta C, Fasola G, Puglisi F (2008) Pegylated liposomal doxorubicin in elderly patients with metastatic breast cancer. Expert Rev Anticancer Ther 8:331–342

    Article  PubMed  CAS  Google Scholar 

  15. Celia C, Calvagno MG, Paolino D, Bulotta S, Ventura CA, Russo D, Fresta M (2008) Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes. J Nanosci Nanotechnol 8:2102–2113

    Article  PubMed  CAS  Google Scholar 

  16. Hwang RF, Yokoi K, Bucana CD, Tsan R, Killion JJ, Evans DB, Fidler IJ (2003) Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res 9:6534–6544

    PubMed  CAS  Google Scholar 

  17. Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22

    Article  PubMed  Google Scholar 

  18. Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR, Li C, Allam CK, Venuta S, Anderson KC, Munshi NC (2004) In vitro and in vivo activity of the maytansinoid immunoconjugate huN901–N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64:4629–4636

    Article  PubMed  CAS  Google Scholar 

  19. Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A, Ventura M, Eramo PO, Viscomi C, Arbitrio M, Rossi M, Caraglia M, Munshi NC, Anderson KC, Tassone P (2008) In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 143:520–531

    PubMed  CAS  Google Scholar 

  20. Shimamura T, Royal RE, Kioi M, Nakajima A, Husain SR, Puri RK (2007) Interleukin-4 cytotoxin therapy synergizes with gemcitabine in a mouse model of pancreatic ductal adenocarcinoma. Cancer Res 67:9903–9912

    Article  PubMed  CAS  Google Scholar 

  21. Damaraju VL, Bouffard DY, Wong CK, Clarke ML, Mackey JR, Leblond L, Cass CE, Grey M, Gourdeau H (2007) Synergistic activity of troxacitabine (Troxatyl) and gemcitabine in pancreatic cancer. BMC Cancer 7:121

    Article  PubMed  Google Scholar 

  22. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W (1992) Cellular elimination of 2′, 2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res 52:533–539

    PubMed  CAS  Google Scholar 

  23. Bouffard DY, Laliberte J, Momparler RL (1993) Kinetic studies on 2′, 2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 45:1857–1861

    Article  PubMed  CAS  Google Scholar 

  24. Matsuda A, Sasaki T (2004) Antitumor activity of sugar-modified cytosine nucleosides. Cancer Sci 95:105–111

    Article  PubMed  CAS  Google Scholar 

  25. Morgan MA, Parsels LA, Kollar LE, Normolle DP, Maybaum J, Lawrence TS (2008) The combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clin Cancer Res 14:5142–5149

    Article  PubMed  CAS  Google Scholar 

  26. Wu W, Sigmond J, Peters GJ, Borch RF (2007) Synthesis and biological activity of a gemcitabine phosphoramidate prodrug. J Med Chem 50:3743–3746

    Article  PubMed  CAS  Google Scholar 

  27. Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O (2008) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 127:239–248

    Article  PubMed  CAS  Google Scholar 

  28. Reddy LH, Couvreur P (2008) Novel approaches to deliver gemcitabine to cancers. Curr Pharm Des 14:1124–1137

    Article  PubMed  CAS  Google Scholar 

  29. Stella B, Arpicco S, Rocco F, Marsaud V, Renoir JM, Cattel L, Couvreur P (2007) Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm 344:71–77

    Article  PubMed  CAS  Google Scholar 

  30. Celia C, Malara N, Terracciano R, Cosco D, Paolino D, Fresta M, Savino R (2008) Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells. Nanomedicine 4:155–166

    PubMed  Google Scholar 

  31. Paolino D, Cosco D, Licciardi M, Giammona G, Fresta M, Cavallaro G (2008) Polyaspartylhydrazide copolymer-based supramolecular vesicular aggregates as delivery devices for anticancer drugs. Biomacromolecules 9:1117–1130

    Article  PubMed  CAS  Google Scholar 

  32. Calvagno MG, Celia C, Paolino D, Cosco D, Iannone M, Castelli F, Doldo P, Frest M (2007) Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes. Curr Drug Deliv 4:89–101

    Article  PubMed  CAS  Google Scholar 

  33. Rahman AM, Yusuf SW, Ewer MS (2007) Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int J Nanomedicine 2:567–583

    PubMed  CAS  Google Scholar 

  34. Verma S, Dent S, Chow BJ, Rayson D, Safra T (2008) Metastatic breast cancer: the role of pegylated liposomal doxorubicin after conventional anthracyclines. Cancer Treat Rev 34:391–406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a grant from the Italian Ministry of University and Research (PRIN 2006, P.I.:M.F., from the Italian Ministry of Health—Regione Calabria Dipartimento Tutela della Salute Politiche Sanitarie e Sociali), from the Italian Ministry of University and Research (PRIN 2007, P.I.:P.T.), and from Associazione Italiana Ricerca sul Cancro (AIRC, P.I.:P.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierfrancesco Tassone.

Additional information

In memory of Prof. Salvatore Venuta, MD, a victim of pancreatic cancer, an oncologist and a scientist who lived future frontiers of cancer therapeutics by strongly trusting in biomedical nanotechnologies.

D. Cosco and A. Bulotta contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosco, D., Bulotta, A., Ventura, M. et al. In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer. Cancer Chemother Pharmacol 64, 1009–1020 (2009). https://doi.org/10.1007/s00280-009-0957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0957-1

Keywords

Navigation