Skip to main content

Advertisement

Log in

Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Non-small-cell lung cancer (NSCLC) has a poor prognosis. Despite advances in therapy, survival has improved only slightly. The 26S proteasome regulates multiple cellular processes through degradation of ubiquitin-tagged proteins. The proteasome inhibitor, bortezomib (Velcade, formerly PS-341), has been shown to be an active anticancer agent both in vitro and in vivo in multiple tumor types.

Purpose

To determine the molecular and cellular effects of the proteasome inhibitor in NSCLC as well as to evaluate the effectiveness of sequential treatment with bortezomib and gemcitabine/carboplatin (G/C) chemotherapy both in vitro and in vivo.

Methods

All experiments were performed in the A549 NSCLC cell line. MTT assays were used to evaluate cytotoxicity. Western blotting evaluated protein levels. Measures of apoptosis included FACS analysis, DAPI staining and caspase-3 cleavage. Long-term cell viability was determined using an anchorage-dependent clonogenic assay. Sequential studies were performed in vitro and in vivo.

Results

Bortezomib increased p21waf1/cip1, induced G2/M arrest, and triggered a small amount of apoptosis. The apoptotic effect of G/C chemotherapy was eliminated when bortezomib was administered prior to the chemotherapy; however, it was accentuated when the bortezomib was given simultaneously or after the chemotherapy.

Conclusions

Bortezomib improves efficacy in combination with gemcitabine and carboplatin in NSCLC, but sequential effects are important and must be considered when developing therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26

    PubMed  Google Scholar 

  2. Spiro SG, Porter JC (2002) Lung cancer-where are we today? Current advances in staging and nonsurgical treatment. Am J Respir Crit Care Med 166:1166–1196

    Article  PubMed  Google Scholar 

  3. Cortes-Funes H (2003) New treatment approaches for lung cancer and impact on survival. Semin Oncol 29:26–29

    Article  Google Scholar 

  4. Crino L, Cappuzzo F (2002) Present and future treatment of advanced non-small cell lung cancer. Semin Oncol 29:9–16

    Article  CAS  Google Scholar 

  5. Adams J (2002) Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14:628–634

    Article  CAS  PubMed  Google Scholar 

  6. Cusack JC (2003) Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev 29 [Suppl 1]:21–31

    Article  CAS  Google Scholar 

  7. Garber K (2002) Cancer research. Taking garbage in, tossing cancer out? Science 295:612–613

    Article  CAS  PubMed  Google Scholar 

  8. Naujokat C, Hoffman S (2002) Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 82:965–980

    CAS  PubMed  Google Scholar 

  9. Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 [Suppl 1]:3–9

    Article  CAS  Google Scholar 

  10. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20:2423–2435

    Article  CAS  PubMed  Google Scholar 

  11. Acquaviva C, Bossis G, Ferrara P, Brockly F, Jariel-Encontre I, Piechaczyk M (2002) Multiple degradation pathways for Fos family proteins. Ann N Y Acad Sci 973:426–434

    CAS  PubMed  Google Scholar 

  12. Jariel-Encontre I, Salvat C, Steff AM, Pariat M, Acquaviva C, Furstoss O, Piechaczyk M (1997) Complex mechanisms for c-fos and c-jun degradation. Mol Biol Rep 24:51–56

    Article  CAS  PubMed  Google Scholar 

  13. Roff M, Thompson J, Rodriguez MS, Jacque JM, Baleux F, Arenzana-Seisdedos F, Hay RT (1996) Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem 271:7844–7850

    CAS  PubMed  Google Scholar 

  14. Kudo Y, Takata T, Ogawa I, Kaneda T, Sato S, Takekoshi T, Zhao M, Miyauch M, Nikai H (2000) p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 6:916–923

    CAS  PubMed  Google Scholar 

  15. Blagosklonny MV, Wu GS, Omura S, el-Deiry WS (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569

    Article  CAS  PubMed  Google Scholar 

  16. Frankel A, Man S, Elliott P, Adams J, Kerbel RS (2000) Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 6:3719–3728

    CAS  PubMed  Google Scholar 

  17. Paramore A, Frantz S (2002) Bortezomib. Nat Rev Drug Discov 2:611–612

    Article  Google Scholar 

  18. Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7:9–16

    CAS  Google Scholar 

  19. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  20. Twombly R (2003) First proteasome inhibitor approved for multiple myeloma. J Natl Cancer Inst 95:845

    Article  PubMed  Google Scholar 

  21. Richardson PG, Hideshima T, Anderson KC (2003) Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 10:361–369

    PubMed  Google Scholar 

  22. Lenz HJ (2003) Clinical update: proteasome inhibitors in solid tumors. Cancer Treat Rev 29 [Suppl 1]:41–48

    Article  CAS  PubMed  Google Scholar 

  23. Ling Y, Liebes L, Jiang J, Holland JF, Elliot PJ, Adams J, Muggia FM, Perez-Soler R (2003) Mechanisms of proteasome inhibitor PS-341-induced G2-M-phase arrest and apoptosis in human non-small cell lung cancer lines. Clin Cancer Res 9:1145–1154

    CAS  PubMed  Google Scholar 

  24. An WG, Hwang SG, Trepel JB, Blagosklonny MV (2000) Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283

    Article  CAS  PubMed  Google Scholar 

  25. Blagosklonny MV, Wu GS, Omura S, el-Deiry WS (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569

    Article  CAS  PubMed  Google Scholar 

  26. Mack PC, Davies AM, Lara PN, Gumerlock PH, Gandara DR (2003) Integration of the proteasome inhibitor PS-341 (Velcade) into the therapeutic approach to lung cancer. Lung Cancer 41:589–596

    Article  Google Scholar 

  27. Hayashi H, Miyamoto H, Ito T, Kameda Y, Nakamura N, Kubota Y, Kitamura H (1997) Analysis of p21Waf1/Cip1 expression in normal, premalignant, and malignant cells during the development of human lung adenocarcinoma. Am J Pathol 151:461–470

    CAS  PubMed  Google Scholar 

  28. Shoji T, Tanaka F, Takata T, Yanagihara K, Otake Y, Hanaoka N, Miyahara R, Nakagawa T, Kawano Y, Ishikawa S, Katakura H, Wada H (2002) Clinical significance of p21 expression in non-small-cell lung cancer. J Clin Oncol 20:3865–3871

    Article  CAS  PubMed  Google Scholar 

  29. Komiya T, Hosono Y, Hirashima T, Masuda N, Yasumitsu T, Nakagawa K, Kikui M, Ohno A, Fukuoka M, Kawase I (1997) p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin Cancer Res 3:1831–1835

    CAS  PubMed  Google Scholar 

  30. Drexler HC (2003) The role of p27Kip1 in proteasome inhibitor induced apoptosis. Cell Cycle 2:438–441

    CAS  PubMed  Google Scholar 

  31. Imai J, Yashiroda H, Maruya M, Yahara I, Tanaka K (2003) Proteasomes and molecular chaperones: cellular machinery responsible for folding and destruction of unfolded proteins. Cell Cycle 2:585–590

    CAS  PubMed  Google Scholar 

  32. Harper P (2003) Update on gemcitabine/carboplatin combination in patients with advanced non-small cell lung cancer. Semin Oncol 30:2–12

    Article  CAS  Google Scholar 

  33. Zatloukal P, Petruzelka L (2003) Gemcitabine/carboplatin combination in advanced non-small cell lung cancer. Lung Cancer 38 [Suppl 2]:S33–S36

    Article  Google Scholar 

  34. Domine M, Casado V, Estevez LG, Leon A, Martin JI, Castillo M, Rubio G, Lobo F (2001) Gemcitabine and carboplatin for patients with advanced non-small cell lung cancer. Semin Oncol 28 [3 Suppl 10]:4–9

    CAS  Google Scholar 

  35. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 22:271–277

    Article  Google Scholar 

  36. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    CAS  PubMed  Google Scholar 

  37. Grenman R, Burk D, Virolainen E, Buick RN, Church J, Schwartz DR, Carey TE (1989) Clonogenic cell assay for anchorage-dependent squamous carcinoma cell lines using limiting dilution. Int J Cancer 44:131–136

    CAS  PubMed  Google Scholar 

  38. Fahy BN, Schlieman M, Virudachalam S, Bold RJ (2003) AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2. Br J Cancer 89:391–397

    Article  CAS  PubMed  Google Scholar 

  39. Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J, McConkey DJ (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253

    CAS  PubMed  Google Scholar 

  40. Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliot PJ, Adams J, Callery MP (2001) 26S Proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biol 82:110–122

    Article  CAS  Google Scholar 

  41. Bold RJ, Virudachalam S, McConkey DJ (2001) Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 99:1–7

    Article  PubMed  Google Scholar 

  42. Cusack JC, Liu R, Houston M, Abendroth K, Elliot PJ, Adams J, Baldwin AS (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kB inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  43. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310

    Article  CAS  PubMed  Google Scholar 

  44. Zoli W, Ricotti L, Tesei A, Barzanti F, Amadori D (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37:69–82

    Article  CAS  PubMed  Google Scholar 

  45. Schreiber M, Muller WJ, Singh G, Graham FL (1999) Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity. Oncogene 18:1663–1676

    Article  CAS  PubMed  Google Scholar 

  46. Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G (1999) Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer 35:796–807

    CAS  PubMed  Google Scholar 

  47. Coleman SC, Stewart ZA, Day TA, Netterville JL, Burkey BB, Pietenpol JA (2002) Analysis of cell-cycle checkpoint pathways in head and neck cancer cell lines: implications for therapeutic strategies. Arch Otolaryngol Head Neck Surg 128:167–176

    PubMed  Google Scholar 

  48. Perez EA, Buckwalter CA (1998) Sequence-dependent cytotoxicity of etoposide and paclitaxel in human breast and lung cancer cell lines. Cancer Chemother Pharmacol 41:448–452

    CAS  PubMed  Google Scholar 

  49. Zoli W, Ricotti L, Barzanti F, Dal Susino M, Frassineti GL, Milandri C, Casadei-Giunchi D, Amadori D (1999) Schedule-dependent interaction of doxorubicin, paclitaxel and gemcitabine in human breast cancer cell lines. Int J Cancer 80:413–416

    Article  CAS  PubMed  Google Scholar 

  50. Zeng S, Chen YZ, Fu L, Johnson KR, Fan W (2000) In vitro evaluation of schedule-dependent interactions between docetaxel and doxorubicin against human breast and ovarian cancer cells. Clin Cancer Res 6:3766–3773

    CAS  PubMed  Google Scholar 

  51. Kano Y, Akutsu M, Tsunoda S, Mori K, Suzuki K, Adachi KI (1998) In vitro schedule-dependent interaction between paclitaxel and SN-38 (the active metabolite of irinotecan) in human carcinoma cell lines. Cancer Chemother Pharmacol 42:91–98

    CAS  PubMed  Google Scholar 

  52. Blagosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14:1502–1508

    Article  CAS  PubMed  Google Scholar 

  53. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi N, Treon SP, Anderson KC (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99:4079–4086

    Article  CAS  PubMed  Google Scholar 

  54. Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, Schafer H (2003) Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251

    Article  CAS  PubMed  Google Scholar 

  55. Weaver KD, Yeyeodu S, Cusack JC, Baldwin AS Jr, Ewend MG (2003) Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol 61:187–196

    Article  PubMed  Google Scholar 

  56. Fahy BN, Schlieman MG, Virudachalam S, Bold RJ (2003) Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res 113:88–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortenson, M.M., Schlieman, M.G., Virudachalam, S. et al. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line. Cancer Chemother Pharmacol 54, 343–353 (2004). https://doi.org/10.1007/s00280-004-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0811-4

Keywords

Navigation