Skip to main content

Advertisement

Log in

CD4+ T cell counts reflect the immunosuppressive state of CD4 helper cells in patients after allogeneic stem cell transplantation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The recovery of the host immune system after allogeneic hematopoietic stem cell transplantation is pivotal to prevent infections, relapse, and secondary malignancies. In particular, numerical CD4+ T cells reconstitution is delayed and CD4 helper cell function is considered impaired as a consequence of the transplant procedure and concomitant immunosuppressive medication. From HIV/AIDS patients, it is known that numerical and functional CD4 defects increase the risk of opportunistic infections. However, and in contrast to patients with HIV, anti-infective prophylaxis after allogeneic transplantation is usually given for 6 months depending on immunosuppressive medication and existing graft-versus-host disease but independently of absolute CD4+ T cells counts. We hypothesized that a qualitative T cell defect is existing after allogeneic transplantation, especially in patients with delayed immune-reconstitution. Applying transcriptional as well as functional approaches, we show that CD4+ T cells with delayed recovery have a distinct transcriptional profile and cluster differently from T cells originated from patients with completed immune recovery. Moreover, inhibitory signatures are substantially enriched within the transcriptional profile of these T cells translating to functional defects and impaired interleukin 2 production. In addition to time after transplant, CD4+ T cells numbers should be considered for the decision to stop or maintain antimicrobial prophylaxis in patients after allogeneic stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Williams KM, Gress RE (2008) Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 21(3):579–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Toubert A, Glauzy S, Douay C, Clave E (2012) Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens 79(2):83–89

    Article  CAS  PubMed  Google Scholar 

  3. Mackall CL, Bare CV, Granger LA, Sharrow SO, Titus JA, Gress RE (1996) Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol 156(12):4609–4616

    CAS  PubMed  Google Scholar 

  4. Hazenberg MD, Otto SA, de Pauw ES, Roelofs H, Fibbe WE, Hamann D, Miedema F (2002) T-cell receptor excision circle and T-cell dynamics after allogeneic stem cell transplantation are related to clinical events. Blood 99(9):3449–3453

    Article  CAS  PubMed  Google Scholar 

  5. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89(10):3700–3707

    CAS  PubMed  Google Scholar 

  6. Shenoy S, Mohanakumar T, Todd G, Westhoff W, Dunnigan K, Adkins DR, Brown RA, DiPersio JF (1999) Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant 23(4):335–346

    Article  CAS  PubMed  Google Scholar 

  7. Maury S, Mary JY, Rabian C, Schwarzinger M, Toubert A, Scieux C, Carmagnat M, Esperou H, Ribaud P, Devergie A, Guardiola P, Vexiau P, Charron D, Gluckman E, Socie G (2001) Prolonged immune deficiency following allogeneic stem cell transplantation: risk factors and complications in adult patients. Br J Haematol 115(3):630–641

    Article  CAS  PubMed  Google Scholar 

  8. Fujimaki K, Maruta A, Yoshida M, Kodama F, Matsuzaki M, Fujisawa S, Kanamori H, Ishigatsubo Y (2001) Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 27(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  9. Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB (2006) Rapid helper T-cell recovery above 200 x 10 6/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant 37(12):1119–1128

    Article  CAS  PubMed  Google Scholar 

  10. Bartelink IH, Belitser SV, Knibbe CA, Danhof M, de Pagter AJ, Egberts TC, Boelens JJ (2013) Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant 19(2):305–313

    Article  PubMed  Google Scholar 

  11. Berger M, Figari O, Bruno B, Raiola A, Dominietto A, Fiorone M, Podesta M, Tedone E, Pozzi S, Fagioli F, Madon E, Bacigalupo A (2008) Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant 41(1):55–62

    Article  CAS  PubMed  Google Scholar 

  12. Kruger WH, Bohlius J, Cornely OA, Einsele H, Hebart H, Massenkeil G, Schuttrumpf S, Silling G, Ullmann AJ, Waldschmidt DT, Wolf HH (2005) Antimicrobial prophylaxis in allogeneic bone marrow transplantation. Guidelines of the infectious diseases working party (AGIHO) of the german society of haematology and oncology. Ann Oncol 16(8):1381–1390

    Article  CAS  PubMed  Google Scholar 

  13. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, Wingard JR, Young JA, Boeckh MJ (2009) Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 15(10):1143–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Crowe SM, Carlin JB, Stewart KI, Lucas CR, Hoy JF (1991) Predictive value of CD4 lymphocyte numbers for the development of opportunistic infections and malignancies in HIV-infected persons. J Acquir Immune Defic Syndr 4(8):770–776

    CAS  PubMed  Google Scholar 

  15. Ickovics JR, Hamburger ME, Vlahov D, Schoenbaum EE, Schuman P, Boland RJ, Moore J (2001) Mortality, CD4 cell count decline, and depressive symptoms among HIV-seropositive women: longitudinal analysis from the HIV Epidemiology Research Study. Jama 285(11):1466–1474

    Article  CAS  PubMed  Google Scholar 

  16. Katzenstein DA, Hammer SM, Hughes MD, Gundacker H, Jackson JB, Fiscus S, Rasheed S, Elbeik T, Reichman R, Japour A, Merigan TC, Hirsch MS (1996) The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. AIDS Clinical Trials Group Study 175 Virology Study Team. N Engl J Med 335(15):1091–1098

    Article  CAS  PubMed  Google Scholar 

  17. Chemnitz JM, Eggle D, Driesen J, Classen S, Riley JL, Debey-Pascher S, Beyer M, Popov A, Zander T, Schultze JL (2007) RNA fingerprints provide direct evidence for the inhibitory role of TGFbeta and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood 110(9):3226–3233

    Article  CAS  PubMed  Google Scholar 

  18. Chemnitz JM, Lanfranco AR, Braunstein I, Riley JL (2006) B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J Immunol 176(11):6603–6614

    Article  CAS  PubMed  Google Scholar 

  19. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E, Rehli M, Byrd JC, Wendtner CM, Plass C (2012) Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res 72(15):3775–3785

    Article  CAS  PubMed  Google Scholar 

  20. Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36(2):e11

    Article  PubMed Central  PubMed  Google Scholar 

  21. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24(13):1547–1548

    Article  CAS  PubMed  Google Scholar 

  22. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

  23. Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25(2):211–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  25. Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, Passweg J, Roosnek E (2008) Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol 30(4):425–437

    Article  PubMed  Google Scholar 

  26. Lyytikainen O, Ruutu T, Volin L, Lautenschlager I, Jokipii L, Tiittanen L, Ruutu P (1996) Late onset Pneumocystis carinii pneumonia following allogeneic bone marrow transplantation. Bone Marrow Transplant 17(6):1057–1059

    CAS  PubMed  Google Scholar 

  27. Storek J, Gooley T, Witherspoon RP, Sullivan KM, Storb R (1997) Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol 54(2):131–138

    Article  CAS  PubMed  Google Scholar 

  28. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H (2009) Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 58(RR-4):1–207, quiz CE201-204

    Google Scholar 

  29. Mofenson LM, Brady MT, Danner SP, Dominguez KL, Hazra R, Handelsman E, Havens P, Nesheim S, Read JS, Serchuck L, Van Dyke R (2009) Guidelines for the prevention and treatment of opportunistic infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. MMWR Recomm Rep 58(RR-11):1–166

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Informed consent was obtained from all healthy donors and from patients for being included in the study.

Conflict of interest

The authors have nothing to disclose in relation to the manuscript submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Holtick.

Additional information

Udo Holtick, Lukas P. Frenzel, Clemens M. Wendtner, and Jens M. Chemnitz contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtick, U., Frenzel, L.P., Shimabukuro-Vornhagen, A. et al. CD4+ T cell counts reflect the immunosuppressive state of CD4 helper cells in patients after allogeneic stem cell transplantation. Ann Hematol 94, 129–137 (2015). https://doi.org/10.1007/s00277-014-2166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2166-1

Keywords

Navigation