Skip to main content
Log in

Gene mutation profiles and prognostic implications in Korean patients with T-lymphoblastic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Genetic alterations implicated in the leukemogenesis of T cell acute lymphoblastic leukemia (T-ALL) have been identified in recent years. In this study, we investigated gene mutation profiles and prognostic implications in a series of Korean T-ALL patients. The study patients were 29 Korean patients with T-ALL; 13 adults (45 %) and 16 children (55 %; male-to-female ratio, 25:4). Clinical, hematologic, and cytogenetic findings were reviewed. We performed mutation analyses for NOTCH1, FBXW7, PHF6, and IL7R genes and survival analyses according to the mutational status. Gene mutations were identified in 66 % of the patients in our series (19/29). Eighteen patients (62 %) had NOTCH1/FBXW7 mutations. Sixteen patients (55 %) had NOTCH1 mutations including nine novel mutations, and eight patients (28 %) had known FBXW7 mutations. Eight patients (28 %; six males and two females) had PHF6 mutations including four novel mutations. Three patients (10 %) had IL7R mutations, which were all novel in-frame insertion or deletion–insertions. The gene mutation profile combined with cytogenetics and FISH study for the p16 gene detected genetic aberrations in 90 % of patients (26/29). There was no significant difference in the frequency of gene mutations between the pediatric and adult patients with T-ALL. Survival analyses suggested a favorable prognostic implication of NOTCH1 mutations in adult T-ALL. Gene mutation studies for NOTCH1, FBXW7, PHF6, and IL7R could detect genetic alterations in a majority of Korean T-ALL patients with novel mutations. We observed similar mutation profiles between adult and pediatric T-ALL, and a favorable prognostic implication of NOTCH1 mutations in adult T-ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pui CH, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet 371:1030–1043

    Article  PubMed  CAS  Google Scholar 

  2. Aifantis I, Raetz E, Buonamici S (2008) Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8:380–390

    Article  PubMed  CAS  Google Scholar 

  3. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, Ferrando A, Fielding AK, Goldstone AH, Ketterling RP, Litzow MR, Luger SM, McMillan AK, Mansour MR, Rowe JM, Tallman MS, Lazarus HM (2009) T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 114:5136–5145

    Article  PubMed  CAS  Google Scholar 

  4. Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, Kaltenbach S, Yakouben K, Mazingue F, Robert A, Boutard P, Plantaz D, Rohrlich P, van Vlierberghe P, Preudhomme C, Otten J, Speleman F, Dastugue N, Suciu S, Benoit Y, Bertrand Y, Cave H (2010) NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 24:2023–2031

    Article  PubMed  CAS  Google Scholar 

  5. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong SA, Look AT (2005) Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23:6306–6315

    Article  PubMed  CAS  Google Scholar 

  7. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A (2006) Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 20:1496–1510

    Article  PubMed  CAS  Google Scholar 

  8. Mullighan CG, Downing JR (2009) Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 23:1209–1218

    Article  PubMed  CAS  Google Scholar 

  9. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, Lu C, Chen SC, Wei L, Collins-Underwood JR, Ma J, Roberts KG, Pounds SB, Ulyanov A, Becksfort J, Gupta P, Huether R, Kriwacki RW, Parker M, McGoldrick DJ, Zhao D, Alford D, Espy S, Bobba KC, Song G, Pei D, Cheng C, Roberts S, Barbato MI, Campana D, Coustan-Smith E, Shurtleff SA, Raimondi SC, Kleppe M, Cools J, Shimano KA, Hermiston ML, Doulatov S, Eppert K, Laurenti E, Notta F, Dick JE, Basso G, Hunger SP, Loh ML, Devidas M, Wood B, Winter S, Dunsmore KP, Fulton RS, Fulton LL, Hong X, Harris CC, Dooling DJ, Ochoa K, Johnson KJ, Obenauer JC, Evans WE, Pui CH, Naeve CW, Ley TJ, Mardis ER, Wilson RK, Downing JR, Mullighan CG (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163

    Article  PubMed  CAS  Google Scholar 

  10. Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW, De Keersmaecker K, Sole X, Xu L, Paietta E, Racevskis J, Wiernik PH, Rowe JM, Meijerink JP, Califano A, Ferrando AA (2012) Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18:436–440

    Article  PubMed  CAS  Google Scholar 

  11. Swerdlow SHCE, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon

    Google Scholar 

  12. Shaffer LG, Slovak ML, Campbell LJ (2009) ISCN: An International System for Human Cytogenetic Nomenclature. S Karger AG, Basel

    Google Scholar 

  13. Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU, Kulozik AE (2006) Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 108:1151–1157

    Article  PubMed  CAS  Google Scholar 

  14. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  PubMed  CAS  Google Scholar 

  15. Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL, Cherian C, Devidas M, Linda SB, Taub JW, Matherly LH (2009) The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia 23:1417–1425

    Article  PubMed  CAS  Google Scholar 

  16. Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, Suzuki N, Hara J, Horibe K, Hayashi Y (2009) FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 145:198–206

    Article  PubMed  CAS  Google Scholar 

  17. van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG, Burger NB, Passier M, van Lieshout EM, Kamps WA, Veerman AJ, van Noesel MM, Pieters R (2008) Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 22:124–131

    Article  PubMed  Google Scholar 

  18. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE (2006) High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20:537–539

    Article  PubMed  CAS  Google Scholar 

  19. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, Reman O, Witz F, Fagot T, Tavernier E, Turlure P, Leguay T, Huguet F, Vernant JP, Daniel F, Bene MC, Ifrah N, Thomas X, Dombret H, Macintyre E (2009) NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 113:3918–3924

    Article  PubMed  CAS  Google Scholar 

  20. Mansour MR, Sulis ML, Duke V, Foroni L, Jenkinson S, Koo K, Allen CG, Gale RE, Buck G, Richards S, Paietta E, Rowe JM, Tallman MS, Goldstone AH, Ferrando AA, Linch DC (2009) Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol 27:4352–4356

    Article  PubMed  CAS  Google Scholar 

  21. Mansur MB, Hassan R, Barbosa TC, Splendore A, Jotta PY, Yunes JA, Wiemels JL, Pombo-de-Oliveira MS (2012) Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia. BMC Cancer 12:9

    Article  PubMed  CAS  Google Scholar 

  22. Ferrando AA (2009) The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program 2009:353–361

    Article  Google Scholar 

  23. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A, Aifantis I (2007) The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204:1825–1835

    Article  PubMed  CAS  Google Scholar 

  24. Erbilgin Y, Sayitoglu M, Hatirnaz O, Dogru O, Akcay A, Tuysuz G, Celkan T, Aydogan G, Salcioglu Z, Timur C, Yuksel-Soycan L, Ure U, Anak S, Agaoglu L, Devecioglu O, Yildiz I, Ozbek U (2010) Prognostic significance of NOTCH1 and FBXW7 mutations in pediatric T-ALL. Dis Markers 28:353–360

    PubMed  CAS  Google Scholar 

  25. Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647:3–12

    Article  PubMed  CAS  Google Scholar 

  26. Kraszewska MD, Dawidowska M, Szczepanski T, Witt M (2012) T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 156:303–315

    Article  PubMed  CAS  Google Scholar 

  27. Wang Q, Qiu H, Jiang H, Wu L, Dong S, Pan J, Wang W, Ping N, Xia J, Sun A, Wu D, Xue Y, Drexler HG, Macleod RA, Chen S (2011) Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica 96:1808–1814

    Article  PubMed  CAS  Google Scholar 

  28. Van Vlierberghe P, Palomero T, Khiabanian H, Van der Meulen J, Castillo M, Van Roy N, De Moerloose B, Philippe J, Gonzalez-Garcia S, Toribio ML, Taghon T, Zuurbier L, Cauwelier B, Harrison CJ, Schwab C, Pisecker M, Strehl S, Langerak AW, Gecz J, Sonneveld E, Pieters R, Paietta E, Rowe JM, Wiernik PH, Benoit Y, Soulier J, Poppe B, Yao X, Cordon-Cardo C, Meijerink J, Rabadan R, Speleman F, Ferrando A (2010) PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 42:338–342

    Article  PubMed  Google Scholar 

  29. Fry TJ, Mackall CL (2005) The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 174:6571–6576

    PubMed  CAS  Google Scholar 

  30. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA, Sarmento LM, Correia N, Toribio ML, Kobarg J, Horstmann M, Pieters R, Brandalise SR, Ferrando AA, Meijerink JP, Durum SK, Yunes JA, Barata JT (2011) Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43:932–939

    Article  PubMed  CAS  Google Scholar 

  31. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, Cario G, Cazzaniga G, Kulozik AE, Stanulla M, Schrappe M, Biondi A, Basso G, Bercovich D, Muckenthaler MU, Izraeli S (2011) Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208:901–908

    Article  PubMed  CAS  Google Scholar 

  32. Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ (2006) NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 12:3043–3049

    Article  PubMed  CAS  Google Scholar 

  33. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M, Spruck C, Grander D, Lendahl U, Sangfelt O (2007) The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67:5611–5616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant #CB08121 from the IN-SUNG Foundation for Medical Research at Samsung Medical Center, Seoul.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jin Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primer sequences for PCR and sequencing experiments (DOCX 56.4 kb)

Supplementary Fig. 1

Survival analyses by Kaplan–Meier estimates of overall survival (OS) and event-free survival (EFS) according to the FBXW7 mutation status in pediatric T-ALL patients (upper panels, a and b) and in adult T-ALL patients (lower panels, c and d) (DOCX 119 kb)

Supplementary Fig. 2

Survival analyses by Kaplan–Meier estimates of overall survival (OS) and event-free survival (EFS) according to the PHF6 mutation status in pediatric T-ALL patients (upper panels, a and b) and in adult T-ALL patients (lower panels, c and d) (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, H.J., Lee, S.H., Yoo, K.H. et al. Gene mutation profiles and prognostic implications in Korean patients with T-lymphoblastic leukemia. Ann Hematol 92, 635–644 (2013). https://doi.org/10.1007/s00277-012-1664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1664-2

Keywords

Navigation