Skip to main content
Log in

Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum β-lactamase production and its impact on outcome

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Escherichia coli and Klebsiella pneumoniae are main pathogens in neutropenic fever even if the proportion of Gram-positive cocci is increasing. Extended-spectrum β-lactamases (ESBL)-producing organisms are an emerging problem in nosocomial infection. Nevertheless, until now, information about risk factors for the acquisition and clinical outcomes of bacteremia due to ESBL-producing organisms is limited in neutropenic patients. From medical records collected between January 2007 and December 2008, we identified a total of 101 consecutive patients who developed bacteremia due to E. coli (n = 87) or K. pneumoniae (n = 14). Twenty-six (26 %) cases of bacteremia were caused by ESBL-producing organisms. A hospital stay of >2 weeks during the 3 months preceding bacteremia [adjusted odds ratio (OR), 5.887; 95 % confidence interval (CI), 1.572–22.041] and the use of broad-spectrum cephalosporins in the 4 weeks prior to bacteremia (adjusted OR, 6.186; 95 % CI, 1.616–23.683) were significantly related to the acquisition of ESBL. Twenty-four (92 %) of the ESBL-producing organisms were susceptible to either piperacillin–tazobactam or amikacin. Aminoglycosides (amikacin or isepamicin) were the main appropriate antimicrobial agents used against the ESBL-producing isolates during the initial empirical treatment (16/22, 73 %). However, the 30-day mortality rates for ESBL bacteremia and non-ESBL bacteremia were not significantly different (15 vs 5 %; p = 0.199). As alternatives to carbapenem, piperacillin–tazobactam plus amikacin or isepamicin combinations may be effective empirical therapeutic options for patients with neutropenic fever who are at high risk of developing bacteremia with ESBL-producing pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Klastersky J, Ameye L, Maertens J, Georgala A, Muanza F, Aoun M, Ferrant A, Rapoport B, Rolston K, Paesmans M (2007) Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents 30(Suppl 1):S51–S59

    Article  PubMed  CAS  Google Scholar 

  2. Madani TA (2000) Clinical infections and bloodstream isolates associated with fever in patients undergoing chemotherapy for acute myeloid leukemia. Infection 28:367–373

    Article  PubMed  CAS  Google Scholar 

  3. Norgaard M, Larsson H, Pedersen G, Schonheyder HC, Sorensen HT (2006) Risk of bacteraemia and mortality in patients with haematological malignancies. Clin Microbiol Infect 12:217–223

    Article  PubMed  CAS  Google Scholar 

  4. Collin BA, Leather HL, Wingard JR, Ramphal R (2001) Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis 33:947–953

    Article  PubMed  CAS  Google Scholar 

  5. Park SH, Choi SM, Lee DG, Choi JH, Yoo JH, Lee JW, Min WS, Shin WS, Kim CC (2006) Current trends of infectious complications following hematopoietic stem cell transplantation in a single center. J Korean Med Sci 21:199–207

    Article  PubMed  Google Scholar 

  6. Kim SH, Kee SY, Lee DG, Choi SM, Park SH, Kwon JC, Eom KS, Kim YJ, Kim HJ, Lee S, Min CK, Kim DW, Choi JH, Yoo JH, Lee JW, Min WS (2012) Infectious complications following allogeneic stem cell transplantation: reduced-intensity vs. myeloablative conditioning regimens. Transpl Infect Dis. doi:10.1111/tid.12003

  7. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad II, Rolston KV, Young JA, Wingard JR, Infectious Diseases Society of America (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 52:e56–e93

    Article  PubMed  Google Scholar 

  8. Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B, Citton R, D'Inzeo T, Fadda G, Cauda R, Spanu T (2007) Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51:1987–1994

    Article  PubMed  CAS  Google Scholar 

  9. Rottier WC, Ammerlaan HS, Bonten MJ (2012) Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 67:1311–1320

    Article  PubMed  CAS  Google Scholar 

  10. Bertz H, Auner HW, Weissinger F, Salwender HJ, Einsele H, Egerer G, Sandherr M, Schuttrumpf S, Sudhoff T, Maschmeyer G (2003) Antimicrobial therapy of febrile complications after high-dose chemo-/radiotherapy and autologous hematopoietic stem cell transplantation. Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 82(Suppl 2):S167–174

    Article  PubMed  Google Scholar 

  11. Lee DG, Choi SM, Choi JH, Yoo JH, Park YH, Kim YJ, Lee S, Min CK, Kim HJ, Kim DW, Lee JW, Min WS, Shin WS, Kim CC (2002) Selective bowel decontamination for the prevention of infection in acute myelogenous leukemia: a prospective randomized trial. Korean J Intern Med 17:38–44

    PubMed  Google Scholar 

  12. Hughes WT, Armstrong D, Bodey GP, Bow EJ, Brown AE, Calandra T, Feld R, Pizzo PA, Rolston KV, Shenep JL, Young LS (2002) 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 34:730–751

    Article  PubMed  Google Scholar 

  13. Carbon C (1995) Overview of the efficacy of isepamicin in the adult core clinical trial programme. J Chemother 7(Suppl 2):79–85

    PubMed  CAS  Google Scholar 

  14. Maraki S, Samonis G, Karageorgopoulos DE, Mavros MN, Kofteridis D, Falagas ME (2012) In vitro antimicrobial susceptibility to isepamicin of 6,296 Enterobacteriaceae clinical isolates collected at a tertiary care university hospital in Greece. Antimicrob Agents Chemother 56:3067–3073

    Article  PubMed  CAS  Google Scholar 

  15. Lee DG, Kim SH, Kim SY, Kim CJ, Park WB, Song YG, Choi JH (2011) Evidence-based guidelines for empirical therapy of neutropenic fever in Korea. Korean J Intern Med 26:220–252

    Article  PubMed  CAS  Google Scholar 

  16. Bekeris LG, Tworek JA, Walsh MK, Valenstein PN (2005) Trends in blood culture contamination: a College of American Pathologists Q-Tracks study of 356 institutions. Arch Pathol Lab Med 129:1222–1225

    PubMed  Google Scholar 

  17. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Munoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821

    Article  PubMed  Google Scholar 

  18. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  19. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963

    Article  PubMed  Google Scholar 

  20. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Bano J, Navarro MD, Romero L, Muniain MA, de Cueto M, Rios MJ, Hernandez JR, Pascual A (2006) Bacteremia due to extended-spectrum β -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 43:1407–1414

    Article  PubMed  Google Scholar 

  22. Bull SB, Mak C, Greenwood CM (2002) A modified score function estimator for multinomial logistic regression in small samples. Comput Stat Data Anal 39:57

    Article  Google Scholar 

  23. Gudiol C, Calatayud L, Garcia-Vidal C, Lora-Tamayo J, Cisnal M, Duarte R, Arnan M, Marin M, Carratala J, Gudiol F (2010) Bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 65:333–341

    Article  PubMed  CAS  Google Scholar 

  24. Kang CI, Chung DR, Ko KS, Peck KR, Song JH (2012) Risk factors for infection and treatment outcome of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol 91:115–121

    Article  PubMed  CAS  Google Scholar 

  25. Hyle EP, Bilker WB, Gasink LB, Lautenbach E (2007) Impact of different methods for describing the extent of prior antibiotic exposure on the association between antibiotic use and antibiotic-resistant infection. Infect Control Hosp Epidemiol 28:647–654

    Article  PubMed  Google Scholar 

  26. Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Fishman NO, Bilker WB, Mao X, Lautenbach E (2005) Risk factors for increasing multidrug resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis 40:1317–1324

    Article  PubMed  CAS  Google Scholar 

  27. Wener KM, Schechner V, Gold HS, Wright SB, Carmeli Y (2010) Treatment with fluoroquinolones or with β-lactam-β-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-β-lactamase-producing Klebsiella species in hospitalized patients. Antimicrob Agents Chemother 54:2010–2016

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Bano J, Navarro MD, Romero L, Muniain MA, Cueto M, Galvez J, Perea EJ, Pascual A (2008) Risk-factors for emerging bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Clin Microbiol Infect 14:180–183

    PubMed  CAS  Google Scholar 

  29. Chong Y, Yakushiji H, Ito Y, Kamimura T (2011) Clinical impact of fluoroquinolone prophylaxis in neutropenic patients with hematological malignancies. Int J Infect Dis 15:e277–e281

    Article  PubMed  CAS  Google Scholar 

  30. Trecarichi EM, Tumbarello M, Spanu T, Caira M, Fianchi L, Chiusolo P, Fadda G, Leone G, Cauda R, Pagano L (2009) Incidence and clinical impact of extended-spectrum-β-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect 58:299–307

    Article  PubMed  Google Scholar 

  31. Pitout JD (2010) Infections with extended-spectrum β-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70:313–333

    Article  PubMed  CAS  Google Scholar 

  32. Peterson LR (2008) Antibiotic policy and prescribing strategies for therapy of extended-spectrum β-lactamase-producing Enterobacteriaceae: the role of piperacillin–tazobactam. Clin Microbiol Infect 14(Suppl 1):181–184

    Article  PubMed  CAS  Google Scholar 

  33. Kang CI, Park SY, Chung DR, Peck KR, Song JH (2012) Piperacillin–tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Infect 64:533–534

    Article  PubMed  Google Scholar 

  34. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME (2012) Carbapenems vs alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 67:2793–2803

    Google Scholar 

  35. Rodriguez-Bano J, Navarro MD, Retamar P, Picon E, Pascual A (2012) β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 54:167–174

    Article  PubMed  CAS  Google Scholar 

  36. Falagas ME, Karageorgopoulos DE, Georgantzi GG, Sun C, Wang R, Rafailidis PI (2012) Susceptibility of Gram-negative bacteria to isepamicin: a systematic review. Expert Rev Anti Infect Ther 10:207–218

    Article  PubMed  CAS  Google Scholar 

  37. Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, Woodford N (2011) Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 66:48–53

    Article  PubMed  CAS  Google Scholar 

  38. Martinez JA, Cobos-Trigueros N, Soriano A, Almela M, Ortega M, Marco F, Pitart C, Sterzik H, Lopez J, Mensa J (2010) Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother 54:3590–3596

    Article  PubMed  CAS  Google Scholar 

  39. Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 60:913–920

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Mi Choi.

Additional information

No external financial support was obtained for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Kwon, JC., Choi, SM. et al. Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum β-lactamase production and its impact on outcome. Ann Hematol 92, 533–541 (2013). https://doi.org/10.1007/s00277-012-1631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1631-y

Keywords

Navigation