Skip to main content
Log in

Experimental determination of the elbow’s center of rotation using the VICON™ optoelectronic motion capture system

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

Knowledge of elbow kinematics is essential to better understand this joint. There is currently no reliable dynamic method to accurately study the elbow joint in a non-invasive manner. The goal of this study was to implement an accurate protocol to study in vivo elbow kinematics using a VICON™ optoelectronic motion analysis system.

Méthods

The elbow’s centers of rotation (CR) were calculated for 10 anatomical specimens. The effect of skin movement was determined by comparing measurements taken using skin surface markers and bone-fixed markers. The validated protocol was then used in 30 healthy subjects who underwent passive elbow joint movements.

Results

The elbow’s CR was found to be distal (7 ± 14 mm), lateral (4 ± 9 mm) and anterior (4 ± 10 mm) to the medial epicondyle in vitro. Mean CR values for anatomical specimens did not differ whether calculated using the skin-based or bone-fixed markers.

Conclusion

This study has validated a dynamic, non-invasive, and accurate method for locating the elbow’s center of rotation. This preliminary study thus found a different center of rotation of the one in the middle of the trochlea previously thought. This could lead us to reflect on the designs of our prostheses to reduce the mechanical stresses and the risk of loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anglin C, Wyss UP (2000) Review of arm motion analyses. Proc Inst Mech Eng H 55:214–541

    Google Scholar 

  2. Baeyens J-P, Van Glabbeek F, Goossens M, Gielen J, Van Roy P, Clarys J-P (2006) In vivo 3D arthrokinematics of the proximal and distal radioulnar joints during active pronation and supination. Clin Biomech 21(Suppl 1):S9–S12. doi:10.1016/j.clinbiomech.2005.09.008

    Article  Google Scholar 

  3. Barlow JD, Morrey BF, O’Driscoll SW, Steinmann SP, Sanchez-Sotelo J (2013) Activities after total elbow arthroplasty. J Shoulder Elbow Surg 91:22–787. doi:10.1016/j.jse.2013.01.023

    Google Scholar 

  4. Bottlang M, Madey SM, Steyers CM, Marsh JL, Brown TD (2000) Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking. J Orthop Res 18:195–202

    Article  CAS  PubMed  Google Scholar 

  5. Chantelot C, Wavreille G, Dos Remedios C, Landejerit B, Fontaine C, Hildebrand H (2008) Intra-articular compressive stress of the elbow joint in extension: an experimental study using Fuji films. Surg Radiol Anat 11:30–103. doi:10.1007/s00276-007-0297-y

    Google Scholar 

  6. Deland JT, Garg A, Walker PS (1987) Biomechanical basis for elbow hinge-distractor design. Clin Orthop Relat Res 12:215–303

    Google Scholar 

  7. Duck TR, Dunning CE, King GJW, Johnson JA (2003) Variability and repeatability of the flexion axis at the ulnohumeral joint. J Orthop Res 21:399–404. doi:10.1016/S0736-0266(02)00198-5

    Article  PubMed  Google Scholar 

  8. Ericson A, Arndt A, Stark A, Wretenberg P, Lundberg A (2003) Variation in the position and orientation of the elbow flexion axis. J Bone Joint Surg Br 44:85–538. doi:10.1302/0301-620X.85B4.13925

    Google Scholar 

  9. Ericson A, Arndt A, Stark A, Noz ME, Maguire GQ Jr, Zeleznik MP et al (2007) Fusion of radiostereometric analysis data into computed tomography space: application to the elbow joint. J Biomech 40:296–304. doi:10.1016/j.jbiomech.2006.01.019

  10. Fu E, Li G, Souer JS, Lozano-Calderon S, Herndon JH, Jupiter JB et al (2009) Elbow position affects distal radioulnar joint kinematics. J Hand Surg Am 8:34–1261. doi:10.1016/j.jhsa.2009.04.025

    Google Scholar 

  11. Goto A, Moritomo H, Murase T, Oka K, Sugamoto K, Arimura T et al (2004) In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging. J Shoulder Elbow Surg 7:13–441. doi:10.1016/j.jse.2004.01.022

    Google Scholar 

  12. Gschwend N, Simmen BR, Matejovsky Z (1996) Late complications in elbow arthroplasty. J Shoulder Elbow Surg 5:86–96

    Article  CAS  PubMed  Google Scholar 

  13. Bias Halvorsen K (2003) compensated least squares estimate of the center of rotation. J Biomech 36:999–1008. doi:10.1016/S0021-9290(03)00070-8

    Article  Google Scholar 

  14. London JT (1981) Kinematics of the elbow. J Bone Joint Surg Am 35:63–529

    Google Scholar 

  15. Mino DE, Palmer AK, Levinsohn EM (1983) The role of radiography and computerized tomography in the diagnosis of subluxation and dislocation of the distal radioulnar joint. J Hand Surg Am 8:23–31

    Article  CAS  PubMed  Google Scholar 

  16. Miyake J, Shimada K, Moritomo H, Kataoka T, Murase T, Sugamoto K (2013) Kinematic Changes in elbow osteoarthritis: in vivo and 3-dimensional analysis using computed tomographic data. J Hand Surg Am 64:38–957. doi:10.1016/j.jhsa.2013.02.006

    Google Scholar 

  17. Morrey BF, Chao EY (1976) Passive motion of the elbow joint. J Bone Joint Surg Am 8:58–501

    Google Scholar 

  18. Nakamura T, Yabe Y, Horiuchi Y, Yamazaki N (1999) In vivo motion analysis of forearm rotation utilizing magnetic resonance imaging. Clin Biomech 20:14–315

    CAS  Google Scholar 

  19. O’Driscoll SW, An KN, Korinek S, Morrey BF (1992) Kinematics of semi-constrained total elbow arthroplasty. J Bone Joint Surg Br 9:74–297

    Google Scholar 

  20. Piazza SJ, Okita N, Cavanagh PR (2001) Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J Biomech 73:34–967

    Google Scholar 

  21. Ray RD, Johnson RJ, Jameson RM (1951) Rotation of the forearm; an experimental study of pronation and supination. J Bone Joint Surg Am 6:33–993

    Google Scholar 

  22. Schmidt R, Disselhorst-Klug C, Silny J, Rau G (1999) A marker-based measurement procedure for unconstrained wrist and elbow motions. J Biomech 21:32–6151

    Google Scholar 

  23. Stanley D (1994) Prevalence and etiology of symptomatic elbow osteoarthritis. J Shoulder Elbow Surg 9:3–386

    Google Scholar 

  24. Stokdijk M, Biegstraaten M, Ormel W, de Boer YA, Veeger HE, Rozing PM (2000) Determining the optimal flexion-extension axis of the elbow in vivo: a study of interobserver and intraobserver reliability. J Biomech 45:33–1139

    Google Scholar 

  25. Tay SC, Berger RA, Tomita K, Tan ET, Amrami KK, An K-N (2007) In vivo three-dimensional displacement of the distal radioulnar joint during resisted forearm rotation. J Hand Surg Am 8:32–450. doi:10.1016/j.jhsa.2007.01.007

    Google Scholar 

  26. Tay SC, Primak AN, Fletcher JG, Schmidt B, Amrami KK, Berger RA et al (2007) Four-dimensional computed tomographic imaging in the wrist: proof of feasibility in a cadaveric model. Skeletal Radiol 9:36–1163. doi:10.1007/s00256-007-0374-7

    Google Scholar 

  27. Tay SC, van Riet R, Kazunari T, Amrami KK, An K-N, Berger RA (2010) In-vivo kinematic analysis of forearm rotation using helical axis analysis. Clin Biomech 9:25–655. doi:10.1016/j.clinbiomech.2010.03.010

    Google Scholar 

  28. Vieilledent S (2002) Comparaison de systèmes d’analyse du mouvement 3D. Rapport de l’INSEP, Projet subventionné par le ministère de la Jeunesse et des Sports, p 54

    Google Scholar 

  29. Wavreille G, Seraphin J, Chantelot C, Marchandise X, Fontaine C (2008) Ligament fibre recruitment of the elbow joint during gravity-loaded passive motion: an experimental study. Clin Biomech 23(2):193–202. doi:10.1016/j.clinbiomech.2007.09.014

    Article  CAS  Google Scholar 

  30. Weinberg AM, Pietsch IT, Krefft M, Pape HC, van Griensven M, Helm MB et al (2001) Pronation and supination of the forearm. With special reference to the humero-ulnar articulation. Unfallchirurg 9:104–404

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pr H. Migaud for his contribution

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvire Guerre.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerre, E., Laronde, P., Cussonneau, J. et al. Experimental determination of the elbow’s center of rotation using the VICON™ optoelectronic motion capture system. Surg Radiol Anat 38, 395–401 (2016). https://doi.org/10.1007/s00276-015-1589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-015-1589-2

Keywords

Navigation