Skip to main content
Log in

Anthropometric difference of the knee on MRI according to gender and age groups

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyze the anthropometric data from MRI images that were obtained from the non-arthritic knees in Asian adults, and to identify the existence of morphologic differences between age groups. This cross-sectional study included knee MR images of 535 patients (273 males, 262 females) taken for the evaluation of soft-tissue injuries, excluding cases with cartilage defect and malalignment. The age, gender, height, and BMI were also assessed. The patients were grouped into three different 20-year age groups (20–39, 40–59, and 60–79). The MRI analysis was performed on the anthropometric parameters of distal femur and posterior tibial slope. Age-related differences were found in femoral width, distance from the distal and posterior cartilage surface to the medial/lateral epicondyle, medial posterior condylar offset (PCO), and posterior condylar angle (PCA) (all P < 0.001), but not in lateral PCO, and medial/lateral tibial slopes. In the analysis of covariance analyses, significant interaction between gender and age groups was found in most parameters, but not in PCA, distance from the posterior cartilage surface to the medial epicondyle, or medial tibial slope. We found anthropometric differences among age groups exist in most of distal femoral parameters, but not in posterior tibial slope. The results of this study can be used by manufacturers to modify prostheses to be suitable for the future Asian elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bellemans J, Carpentier K, Vandenneucker H, Vanlauwe J, Victor J (2010) The John Insall Award: both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin Orthop Relat Res 468:29–36

    PubMed  Google Scholar 

  2. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47

    Google Scholar 

  3. Blaha JD, Mancinelli CA, Overgaard KA (2009) Failure of sex to predict the size and shape of the knee. J Bone Joint Surg Am 91(Suppl 6):19–22

    PubMed  Google Scholar 

  4. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ (2009) Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 16:341–347

    PubMed  Google Scholar 

  5. Chin KR, Dalury DF, Zurakowski D, Scott RD (2002) Intraoperative measurements of male and female distal femurs during primary total knee arthroplasty. J Knee Surg 15:213–217

    PubMed  Google Scholar 

  6. Dennis DA (2004) Evaluation of painful total knee arthroplasty. J Arthroplasty 19:35–40

    PubMed  Google Scholar 

  7. Ding C, Cicuttini F, Scott F, Cooley H, Jones G (2005) Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 64:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding C, Cicuttini F, Scott F, Glisson M, Jones G (2003) Sex differences in knee cartilage volume in adults: role of body and bone size, age and physical activity. Rheumatol (Oxf) 42:1317–1323

    CAS  Google Scholar 

  9. Duparc F, Thomine JM, Simonet J, Biga N (2014) Femoral and tibial bone torsions associated with medial femoro-tibial osteoarthritis. Index of cumulative torsions. Orthop Traumatol Surg Res 100:69–74

    CAS  PubMed  Google Scholar 

  10. Elsner JJ, Portnoy S, Guilak F, Shterling A, Linder-Ganz E (2010) MRI-based characterization of bone anatomy in the human knee for size matching of a medial meniscal implant. J Biomech Eng 132:101008

    PubMed  Google Scholar 

  11. Floyd B (2007) Focused life history data and linear enamel hypoplasia to help explain intergenerational variation in relative leg length within Taiwanese families. Am J Hum Biol 19:358–375

    CAS  PubMed  Google Scholar 

  12. Frisancho AR (2007) Relative leg length as a biological marker to trace the developmental history of individuals and populations: growth delay and increased body fat. Am J Hum Biol 19:703–710

    PubMed  Google Scholar 

  13. Gillespie RJ, Levine A, Fitzgerald SJ, Kolaczko J, DeMaio M, Marcus RE, Cooperman DR (2011) Gender differences in the anatomy of the distal femur. J Bone Joint Surg Br 93:357–363

    CAS  PubMed  Google Scholar 

  14. Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL (2000) Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 15:354–359

    CAS  PubMed  Google Scholar 

  15. Ha CW, Na SE (2012) The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees. J Bone Joint Surg Br 94:638–641

    CAS  PubMed  Google Scholar 

  16. Harvey WF, Niu J, Zhang Y, McCree PI, Felson DT, Nevitt M, Xu L, Aliabadi P, Hunter DJ (2008) Knee alignment differences between Chinese and Caucasian subjects without osteoarthritis. Ann Rheum Dis 67:1524–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90:2724–2734

    PubMed  PubMed Central  Google Scholar 

  18. Hitt K, Shurman JR 2nd, Greene K, McCarthy J, Moskal J, Hoeman T, Mont MA (2003) Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am 85-A(Suppl 4):115–122

    Google Scholar 

  19. Ho WP, Cheng CK, Liau JJ (2006) Morphometrical measurements of resected surface of femurs in Chinese knees: correlation to the sizing of current femoral implants. Knee 13:12–14

    PubMed  Google Scholar 

  20. Keeney JA, Eunice S, Pashos G, Wright RW, Clohisy JC (2011) What is the evidence for total knee arthroplasty in young patients?: a systematic review of the literature. Clin Orthop Relat Res 469:574–583

    PubMed  Google Scholar 

  21. Kwak DS, Han S, Han CW, Han SH (2010) Resected femoral anthropometry for design of the femoral component of the total knee prosthesis in a Korean population. Anat Cell Biol 43:252–259

    PubMed  PubMed Central  Google Scholar 

  22. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinathan P, Han SH, Han CW (2007) Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee 14:295–300

    PubMed  Google Scholar 

  23. Lahti-Koski M, Seppanen-Nuijten E, Mannisto S, Harkanen T, Rissanen H, Knekt P, Rissanen A, Heliovaara M (2010) Twenty-year changes in the prevalence of obesity among Finnish adults. Obes Rev 11:171–176

    CAS  PubMed  Google Scholar 

  24. Lemaire P, Pioletti DP, Meyer FM, Meuli R, Dorfl J, Leyvraz PF (1997) Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc 5:251–257

    CAS  PubMed  Google Scholar 

  25. Mahfouz M, Abdel Fatah EE, Bowers LS, Scuderi G (2012) Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res 470:172–185

    PubMed  Google Scholar 

  26. Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, Iwamoto Y (2004) Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res 22:104–109

    PubMed  Google Scholar 

  27. Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T (2005) Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat 27:108–112

    PubMed  Google Scholar 

  28. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14:13–29

    CAS  PubMed  Google Scholar 

  29. Ravi B, Croxford R, Reichmann WM, Losina E, Katz JN, Hawker GA (2012) The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. Best Pract Res Clin Rheumatol 26:637–647

    PubMed  Google Scholar 

  30. Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538

    CAS  PubMed  Google Scholar 

  31. Servien E, Viskontas D, Giuffre BM, Coolican MR, Parker DA (2008) Reliability of bony landmarks for restoration of the joint line in revision knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16:263–269

    PubMed  Google Scholar 

  32. Shultz SJ, Schmitz RJ (2012) Tibial plateau geometry influences lower extremity biomechanics during landing. Am J Sports Med 40:2029–2036

    PubMed  Google Scholar 

  33. Stiehl JB, Abbott BD (1995) Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthroplasty 10:785–789

    CAS  PubMed  Google Scholar 

  34. Tamari K, Tinley P, Briffa K, Aoyagi K (2006) Ethnic-, gender-, and age-related differences in femorotibial angle, femoral antetorsion, and tibiofibular torsion: cross-sectional study among healthy Japanese and Australian Caucasians. Clin Anat 19:59–67

    PubMed  Google Scholar 

  35. Terzidis I, Totlis T, Papathanasiou E, Sideridis A, Vlasis K, Natsis K (2012) Gender and side-to-side differences of femoral condyles morphology: osteometric data from 360 Caucasian dried femori. Anat Res Int 2012:679658

    PubMed  PubMed Central  Google Scholar 

  36. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplasty 17:1028–1032

    CAS  PubMed  Google Scholar 

  37. Urabe K, Miura H, Kuwano T, Matsuda S, Nagamine R, Sakai S, Masuda K, Iwamoto Y (2003) Comparison between the shape of resected femoral sections and femoral prostheses used in total knee arthroplasty in Japanese patients: simulation using three-dimensional computed tomography. J Knee Surg 16:27–33

    PubMed  Google Scholar 

  38. W-Dahl A, Robertsson O, Lidgren L (2010) Surgery for knee osteoarthritis in younger patients. Acta Orthop 81:161–164

    PubMed  PubMed Central  Google Scholar 

  39. Yagi T, Sasaki T (1986) Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop Relat Res 213:177–182

    Google Scholar 

  40. Yazar F, Imre N, Battal B, Bilgic S, Tayfun C (2012) Is there any relation between distal parameters of the femur and its height and width? Surg Radiol Anat 34:125–132

    PubMed  Google Scholar 

  41. Yip DK, Zhu YH, Chiu KY, Ng TP (2004) Distal rotational alignment of the Chinese femur and its relevance in total knee arthroplasty. J Arthroplasty 19:613–619

    PubMed  Google Scholar 

  42. Yoshiike N, Seino F, Tajima S, Arai Y, Kawano M, Furuhata T, Inoue S (2002) Twenty-year changes in the prevalence of overweight in Japanese adults: the National Nutrition Survey 1976–95. Obes Rev 3:183–190

    CAS  PubMed  Google Scholar 

  43. Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16:493–497

    CAS  PubMed  Google Scholar 

  44. Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 26:124–130

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant no. 04-2010-0770 from the SNUH Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Baik Kang.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Oh, S., Chang, C.B. et al. Anthropometric difference of the knee on MRI according to gender and age groups. Surg Radiol Anat 38, 203–211 (2016). https://doi.org/10.1007/s00276-015-1536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-015-1536-2

Keywords

Navigation