Skip to main content
Log in

Comparison of two methods for the estimation of subcortical volume and asymmetry using magnetic resonance imaging: a methodological study

Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The subcortical brain structures are associated with other structures of nervous system; therefore, they have major influence on sensory–motor, limbic and cognitive information processing. Magnetic resonance imaging provides a detailed knowledge of normal and diseased anatomical structures for medical research. The aim of the current study was to compare the volumes of subcortical brain structures and determine the probable volumetric asymmetry in healthy subjects using stereological (point-counting) and semi-automatic segmentation methods.

Methods

MR scans were obtained from 30 subjects (17 males, 13 females) free of any psychiatric, neurological or cognitive impairment. MR images were analyzed by using stereological (point-counting) and semi-automatic segmentation methods.

Results

We did not find any significant differences among the subjects with respect to gender using both methods. This study showed no significant asymmetry in subcortical structures according to methods. Also, no significant difference was found between point-counting and semi-automated segmentation methods for the volumes of subcortical structures (p > 0.05).

Conclusion

From these results, it can be concluded that the semi-automated segmentation method and stereological technique can be used for reliable volume estimation of subcortical structures. However, the stereological method takes less time than semi-automated segmentation; it is simple, reliable and inexpensive. Further studies are required with larger samples in order to support these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acer N, Bayar B, Basaloglu H et al (2008) Unbiased estimation of the calcaneus volume using the Cavalieri principle on computed tomography images. Ann Anat 190:452–460

    Article  PubMed  CAS  Google Scholar 

  2. Acer N, Şahin B, Baş O et al (2007) Comparison of three methods for the estimation of total intracranial volume: stereologic, planimetric, and anthropometric approaches. Ann Plast Surg 58:48–53

    Article  PubMed  CAS  Google Scholar 

  3. Acer N, Sahin B, Usanmaz M et al (2008) Comparison of point counting and planimetry methods for the assessment of cerebellar volume in human using magnetic resonance imaging: a stereological study. Surg Radiol Anat 30:335–339

    Article  PubMed  Google Scholar 

  4. Acer N, Sofikerim M, Ertekin T et al (2011) Assessment of in vivo calculation with ultrasonography compared to physical sections in vitro: a stereological study of prostate volumes. Anat Sci Int 86:78–85

    Article  PubMed  Google Scholar 

  5. Alata M, Molhim M, Ramini A (2008) Optimizing of Fuzzy C-means clustering algorithm using GA. World Acad Sc Eng Technol 39:224–229

    Google Scholar 

  6. Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 18:880–894

    Article  PubMed  Google Scholar 

  7. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  Google Scholar 

  8. Brambilla P, Harenski K, Nicoletti MA et al (2001) Anatomical MRI study of basal ganglia in bipolar disorder patients. Psychiatry Res 106:65–80

    Article  PubMed  CAS  Google Scholar 

  9. Calmon G, Roberts N (2000) Automatic measurement of changes in brain volume on consecutive 3D MR images by segmentation propagation. Magn Reson Imaging 18:439–453

    Article  PubMed  CAS  Google Scholar 

  10. Doherty CP, Fitzsimons M, Holohan T et al (2000) Accuracy and validity of stereology as a quantitative method for assessment of human temporal lobe volumes acquired by magnetic resonance imaging. Magn Reson Imaging 18:1017–1025

    Article  PubMed  CAS  Google Scholar 

  11. Douaud G, Gaura V, Ribeiro MJ et al (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel based morphometric study. Neuroimage 32:1562–1575

    Article  PubMed  CAS  Google Scholar 

  12. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57

    Article  Google Scholar 

  13. Ekinci N, Acer N, Akkaya A et al (2008) Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging. Surg Radiol Anat 30:489–494

    Article  PubMed  Google Scholar 

  14. Erbagci H, Keser M, Kervancioglu S et al (2012) Estimation of the brain stem volume by stereological method on magnetic resonance imaging. Surg Radiol Anat 34:819–824

    Google Scholar 

  15. Ertekin T, Acer N, Turgut AT et al (2011) Comparison of three methods for the estimation of the pituitary gland volume using magnetic resonance imaging: a stereological study. Pituitary 14:31–38

    Article  PubMed  Google Scholar 

  16. Escalona PR, McDonald WM, Doraiswamy PM et al (1991) In vivo stereological assessment of human cerebellar volume: effects of gender and age. Am J Neuroradiol 12:927–929

    PubMed  CAS  Google Scholar 

  17. Filipek PA, Kennedy DN, Caviness VS Jr (1991) Volumetric analyses of central nervous system neoplasm based on MRI. Pediatr Neurol 7:347–351

    Article  PubMed  CAS  Google Scholar 

  18. Garcı′a-Fin˜ana M, Keller SS, Roberts N (2009) Confidence intervals for the volume of brain structures in Cavalieri sampling with local errors. J Neurosci Methods 30:71–77

    Article  Google Scholar 

  19. Gocmen-Mas N, Pelin C, Canan S et al (2009) Stereological evaluation of volumetric asymmetry in healthy human cerebellum. Surg Radiol Anat 31:177–181

    Article  PubMed  Google Scholar 

  20. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsci 147:229–263

    Article  CAS  Google Scholar 

  21. Hallahan BP, Craig MC, Toal F et al (2011) In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study. Neuroimage 54:16–24

    Article  PubMed  Google Scholar 

  22. Han X, Jovicich J, Salat D et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194

    Article  PubMed  Google Scholar 

  23. Hokama H, Shenton ME, Nestor PG et al (1995) Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 61:209–229

    Article  PubMed  CAS  Google Scholar 

  24. Ishii K, Soma T, Kono AK et al (2006) Automatic volumetric measurement of segmented brain structures on magnetic resonance imaging. Radiat Med 24:422–430

    Article  PubMed  Google Scholar 

  25. Jovicich J, Czanner S, Greve D et al (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30:436–443

    Article  PubMed  Google Scholar 

  26. Jovicich J, Czanner S, Han X et al (2009) MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46:177–192

    Article  PubMed  Google Scholar 

  27. Kantarci K, Jack CR Jr (2004) Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease. NeuroRx 1:196–205

    Article  PubMed  Google Scholar 

  28. Kassubek J, Juengling FD, Ecker D et al (2005) Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex 15:846–853

    Article  PubMed  Google Scholar 

  29. Keshavan MS, Dick E, Mankowski I et al (2002) Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 58:173–183

    Article  PubMed  Google Scholar 

  30. Krabbe K, Karlsborg M, Hansen A et al (2005) Increased intracranial volume in Parkinson’s disease. J Neurol Sci 239:45–52

    Article  PubMed  Google Scholar 

  31. Kreczmanski P, Heinsen H, Mantua V et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692

    Article  PubMed  Google Scholar 

  32. Kuroki N, Kubicki M, Nestor PG et al (2006) Fornix integrity and hippocampal volume in male schizophrenic patients. Biol Psychiatry 60:22–31

    Article  PubMed  Google Scholar 

  33. Kusbeci OY, Bas O, Gocmen-Mas N et al (2009) Evaluation of cerebellar asymmetry in Alzheimer’s disease: a stereological study. Dement Geriatr Cogn Disord 28(1):1–5

    Article  PubMed  Google Scholar 

  34. Lee NJ, Park IS, Koh IS et al (2009) No volume difference of medulla oblongata between young and old Korean people. Brain Res 1276:77–82

    Article  PubMed  CAS  Google Scholar 

  35. Lin X, Qiu T, Morain-Nicolier F et al (2010) A topology preserving non-rigid registration algorithm with integration shape knowledge to segment brain subcortical structures from MRI images. Pattern Recogn 43:2418–2427

    Article  Google Scholar 

  36. Looi JC, Lindberg O, Liberg B et al (2008) Volumetrics of the caudate nucleus: reliability and validity of a new manual tracing protocol. Psychiatry Res 163:279–288

    Article  PubMed  Google Scholar 

  37. Looi JC, Lindberg O, Zandbelt BB (2008) Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR Am J Neuroradiol 29:1537–1543

    Article  PubMed  CAS  Google Scholar 

  38. Looi JC, Macfarlane MD, Walterfang M et al (2011) Morphometric analysis of subcortical structures in progressive supranuclear palsy: in vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res 194:163–175

    Article  PubMed  Google Scholar 

  39. Looi JC, Svensson L, Lindberg O et al (2009) Putaminal volume in frontotemporal lobar degeneration and Alzheimer disease: differential volumes in dementia subtypes and controls. AJNR Am J Neuroradiol 30:1552–1560

    Article  PubMed  CAS  Google Scholar 

  40. Mamah D, Wang L, Barch D et al (2007) Structural analysis of the basal ganglia in schizophrenia. Schizophr Res 89:59–71

    Article  PubMed  Google Scholar 

  41. Nisari M, Ertekin T, Ozçelik O et al (2012) Stereological evaluation of the volume and volume fraction of newborns’ brain compartment and brain in magnetic resonance images. Surg Radiol Anat 34:825–832

    Google Scholar 

  42. Nuñez SC, Roussotte F, Sowell ER (2011) Focus on: structural and functional brain abnormalities in fetal alcohol spectrum disorders. Alcohol Res Health 34:121–132

    PubMed  Google Scholar 

  43. Ostby Y, Tamnes CK, Fjell AM et al (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29:11772–11782

    Article  PubMed  Google Scholar 

  44. Patenaude B, Smith SM, Kennedy DN et al (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922

    Article  PubMed  Google Scholar 

  45. Pavic L, Rudolf G, Rados M et al (2007) Smaller right hippocampus in war veterans with posttraumatic stress disorder. Psychiatry Res Neuroimaging 154:191–198

    Article  Google Scholar 

  46. Péran P, Cherubini A, Luccichenti G et al (2009) Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 30:2667–2675

    Article  PubMed  Google Scholar 

  47. Pessoa L (2010) Emergent processes in cognitive-emotional interactions. Dialogues Clin Neurosci 12:433–448

    PubMed  Google Scholar 

  48. Sahin B, Emirzeoglu M, Uzun A et al (2003) Unbiased estimation of the liver volume by the Cavalieri principle using magnetic resonance images. Eur J Radiol 47:164–170

    Article  PubMed  Google Scholar 

  49. Sahin B, Ergur H (2006) Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study. Eur J Radiol 57:96–101

    Article  PubMed  Google Scholar 

  50. Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys 35:3–14

    Article  PubMed  Google Scholar 

  51. Shenton ME, Kikinis R, Jolesz FA et al (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia: a quantitative magnetic resonance imaging study. N Eng J Med 327:604–612

    Article  CAS  Google Scholar 

  52. Shenton ME, Dickey CC, Frumin M et al (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  PubMed  CAS  Google Scholar 

  53. Szabó CA, Lancaster JL, Xiong J et al (2003) MR imaging volumetry of subcortical structures and cerebellar hemispheres in normal persons. AJNR Am J Neuroradiol 24:644–647

    PubMed  Google Scholar 

  54. Walters RJC, Fox NC, Crum WR et al (2001) Hemodialysis and cerebral edema. Nephron 87:143–147

    Article  PubMed  CAS  Google Scholar 

  55. Wang L, Joshi SC, Miller MI et al (2001) Statistical analysis of hippocampal asymmetry in schizophrenia. Neuroimage 14:531–545

    Article  PubMed  CAS  Google Scholar 

  56. Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P et al (2009) Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. Neuroimage 44:1324–1333

    Article  PubMed  CAS  Google Scholar 

  57. Xie K, Yang J, Zhang ZG et al (2005) Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 56:12–19

    Article  PubMed  Google Scholar 

  58. Zhou J, Rajapakse JC (2005) Segmentation of subcortical brain structures using fuzzy templates. Neuroimage 28:915–924

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Kenan Aycan, Prof. Dr; Erdoğan Unur, Prof. Dr.; Harun Ulger, Prof. Dr. for skilful technical assistance.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Ertekin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertekin, T., Acer, N., Içer, S. et al. Comparison of two methods for the estimation of subcortical volume and asymmetry using magnetic resonance imaging: a methodological study. Surg Radiol Anat 35, 301–309 (2013). https://doi.org/10.1007/s00276-012-1036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-012-1036-6

Keywords

Navigation