Skip to main content

Advertisement

Log in

Using midday stem water potential for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (−1.5 and −1.8 MPa during fruit growth and −1.5 and −2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrisqueta I, Tapia LM, Conejero W, Sánchez-Tobirio MI, Abrisqueta JM, Vera J, Ruiz-Sánchez MC (2010) Response of early-peach [Prunus persica (L.)] trees to deficit irrigation. Span J Agric Res 8(S2):S30–S39

    Article  Google Scholar 

  • Alcobendas R, Mirás-Avalos JM, Alarcón JJ, Nicolás E (2013) Effects of irrigation and fruit position on size, colour, firmness and sugar contents of fruits in a mid-late maturing peach cultivar. Sci Hort 164:340–347. doi:10.1016/j.scienta.2012.05.003

    Article  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper no. 56, Rome, Italy

  • Artés F, Escriche AJ, Martínez JA, Marín JG (1993) Quality factors in four varieties of melon (Cucumis melo L.). J Food Qual 16:91–100. doi:10.1111/j.1745-4557.1993.tb00352.x

    Article  Google Scholar 

  • Ballester C, Castel J, Testi L, Intrigliolo DS, Castel JR (2013) Can heat-pulse sap flow measurements be used as continuous water stress indicators of citrus trees? Irrig Sci 31:1053–1063. doi:10.1007/s00271-012-0386-5

    Article  Google Scholar 

  • Besset J, Génard M, Girard T, Serra V, Bussi C (2001) Effect of water stress applied during the final stage of rapid growth on peach trees (cv. “Big-Top”). Sci Hort 91:289–303. doi:10.1016/S0304-4238(01)00272-2

    Article  Google Scholar 

  • Bonet L, Ferrer P, Castel JR, Intrigliolo DS (2010) Soil capacitance sensors and stem dendrometers. Useful tools for irrigation scheduling of commercial orchards? Span J Agric Res 8:852–865

    Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology, vol 12B. Springer, Berlin, pp 264–324

    Google Scholar 

  • Buendía B, Allende A, Nicolás E, Alarcón JJ, Gil MI (2008) Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches. J Agric Food Chem 56:3601–3608. doi:10.1021/jf800190f

    Article  PubMed  Google Scholar 

  • Chalmers DJ, Mitchell PD, Van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J Am Soc Hort Sci 106:307–312

    Google Scholar 

  • Conejero W, Alarcón JJ, García-Orellana Y, Nicolás E, Torrecillas A (2007) Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees. Tree Physiol 27:1753–1759. doi:10.1093/treephys/27.12.1753

    Article  CAS  PubMed  Google Scholar 

  • Conejero W, Mellisho CD, Ortuño MF, Moriana A, Moreno F, Torrecillas A (2011) Using trunk diameter sensors for regulated deficit irrigation scheduling in early maturing peach trees. Environ Exp Bot 71:409–415. doi:10.1016/j.envexpbot.2011.02.014

    Google Scholar 

  • Crisosto CH, Johnson RS, Luza JG, Crisosto GM (1994) Irrigation regimes affect fruit soluble solids concentration and rate of water loss of “O’Henry” peaches. HortScience 29:1169–1171

    Google Scholar 

  • Crisosto CH, Johnson RS, DeJong T, Day KR (1997) Orchard factors affecting postharvest stone-fruit quality. HortScience 32:820–823

    Google Scholar 

  • Dichio B, Xiloyannis C, Sofo A, Montanaro G (2007) Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 290:127–137. doi:10.1007/s11104-006-9144-x

    Article  CAS  Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159. doi:10.1093/jxb/erl165

    Article  CAS  PubMed  Google Scholar 

  • Fernández JE, Cuevas MV (2010) Irrigation scheduling from stem diameter variations: a review. Agric Forest Meteorol 150:135–151. doi:10.1016/j.agrformet.2009.11.006

    Article  Google Scholar 

  • Ghrab M, Masmoudi MM, Ben Mimoun M, Ben Mechlia N (2013) Plant- and climate-based indicators for irrigation scheduling in mid-season peach cultivar under contrasting watering conditions. Sci Hort 158:59–67. doi:10.1016/j.scienta.2013.04.032

    Article  Google Scholar 

  • Girona J, Mata M, Goldhammer DA, Jonson RS, DeJong TM (1993) Patterns of soil and tree water status and leaf functioning during regulated deficit irrigation scheduling in peach. J Am Soc Hort Sci 118:580–586

    Google Scholar 

  • Girona J, Mata M, Arbonès A, Alegre S, Rufat J, Marsal J (2003) Peach tree response to single and combined regulated deficit irrigation regimes under shallow soils. J Am Soc Hort Sci 128:432–440

    Google Scholar 

  • Girona J, Gelly M, Mata M, Arbonès A, Rufat J, Marsal J (2005a) Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric Water Manage 72:97–108. doi:10.1016/j.agwat.2004.09.011

    Article  Google Scholar 

  • Girona J, Mata M, Marsal M (2005b) Regulated deficit irrigation during kernel filling period and optimal irrigation rates in almond. Agric Water Manage 75:152–167. doi:10.1016/j.agwat.2004.12.008

    Article  Google Scholar 

  • Girona J, Mata M, del Campo J, Arbonès A, Bartra E, Marsal J (2006) The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig Sci 24:115–127. doi:10.1007/s00271-005-0015-7

    Article  Google Scholar 

  • Goldhamer DA, Fereres E (2001) Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig Sci 20:115–125. doi:10.1007/s002710000034

    Article  Google Scholar 

  • Goldhamer DA, Fereres E (2004) Irrigation scheduling of almond trees with trunk diameter sensors. Irrig Sci 23:11–19. doi:10.1007/s00271-003-0088-0

    Article  Google Scholar 

  • Goldhamer DA, Salinas M (2000) Evaluation of regulated deficit irrigation on mature orange trees grown under high evaporative demand. In: Proceedings of the international society of citriculture (ISC), IX Congress, Orlando, FL, USA, pp 227–231

  • González-Altozano P, Castel JR (2000) Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees II. Vegetative growth. J Hortic Sci Biotechnol 75:388–392

    Google Scholar 

  • Intrigliolo D, Castel JR (2006) Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum. Agric Water Manage 83:173–180. doi:10.1016/j.agwat.2005.12.005

    Article  Google Scholar 

  • Lampinen BD, Shackel KA, Southwick SM, Olson WH (2001) Deficit irrigation strategies using midday stem water potential in prune. Irrig Sci 20:47–54. doi:10.1007/s002710000028

    Article  Google Scholar 

  • López G, Arbonés A, Del Campo J, Mata M, Vallverdú X, Girona J, Marsal J (2008) Response of peach trees to regulated deficit irrigation during stage II of fruit development and summer pruning. Span J Agric Res 6:479–491

    Article  Google Scholar 

  • López G, Behboudian H, Vallverdu X, Mata M, Girona J, Marsal J (2010) Mitigation of severe water stress by fruit thinning in ‘O’Henry’ peach: implications for fruit quality. Sci Hortic 125:294–300. doi:10.1016/j.scienta.2010.04.003

    Article  Google Scholar 

  • López G, Behboudian MH, Echeverría G, Girona J, Marsal J (2011) Instrumental and sensory evaluation of fruit quality for ‘Ryan’s Sun’ peach grown under deficit irrigation. HorTechnology 21(6):712–719

    Google Scholar 

  • MAGRAMA (2015) Anuario de estadística Avance 2014. Ministerio de Agricultura, Alimentación y Medio Ambiente. www.magrama.gob.es

  • Mirás-Avalos JM, Alcobendas R, Alarcón JJ, Valsesia P, Génard M, Nicolás E (2013) Assessment of the water stress effects on peach fruit quality and size using a fruit tree model, QualiTree. Agric Water Manage 128:1–12. doi:10.1016/j.agwat.2013.06.008

    Article  Google Scholar 

  • Moreno F, Fernández JE, Clothier BE, Green SR (1996) Transpiration and root water uptake by olive trees. Plant Soil 184:85–96

    Article  CAS  Google Scholar 

  • Moriana A, Orgaz F, Fereres E, Pastor M (2003) Yield responses of a mature olive orchard to water deficits. J Am Soc Hort Sci 128:425–431

    Google Scholar 

  • Moriana A, Giron I, Martín-Palomo MJ, Conejero W, Ortuño MF, Torrecillas A, Moreno F (2010) New approach for olive trees irrigation scheduling using trunk diameter sensors. Agric Water Manage 97:1822–1828. doi:10.1016/j.agwat.2010.06.022

    Article  Google Scholar 

  • Myers BJ (1988) Water stress integral a link between short-term stress and long term growth. Tree Physiol 4:315–323. doi:10.1093/treephys/4.4.315

    Article  PubMed  Google Scholar 

  • Naor A, Cohen S (2003) Sensitivity and variability of maximum trunk, shrinkage, midday stem water potential, and transpiration rate in response to withholding irrigation from field-grown apple trees. HortScience 38:547–551

    Google Scholar 

  • Pereira LS, Tenhunen JD, Lange OL, Beyschalag W, Meyer A, David MM (1986) Seasonal and diurnal patterns in leaf gas exchange of Eucalyptus globulus trees growing in Portugal. Can J Forest Res 16:177–184. doi:10.1139/x86-033

    Article  Google Scholar 

  • Pérez-Pastor A (2001) Estudio agronómico y fisiológico del albaricoquero en condiciones de infradotación hídrica. Ph.D. Thesis. Universidad Politécnica de Cartagena, Murcia, Spain

  • Pérez-Pastor A, Domingo R, Torrecillas A, Ruiz-Sánchez MC (2009) Response of apricot trees to deficit irrigation strategies. Irrig Sci 27:231–242. doi:10.1007/s00271-008-0136-x

    Article  Google Scholar 

  • Rahmati M, Davarynejad GH, Génard M, Bannayan M, Azizi M, Vercambre G (2015) Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions. PLoS ONE 10(4):e0120246. doi:10.1371/journal.pone.0120246

    Article  PubMed Central  PubMed  Google Scholar 

  • Remorini D, Massai R (2003) Comparison of water status indicators for young peach trees. Irrig Sci 22:39–46. doi:10.1007/s00271-003-0068-4

    Google Scholar 

  • Romero P, Botía P, García F (2004) Effects of regulated deficit irrigation under subsurface drip irrigation conditions on water relations of mature almond trees. Plant Soil 260:155–168

    Article  CAS  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Castel JR (2010) Review. Deficit irrigation in fruit trees and vines in Spain. Span J Agric Res 8(S2):S5–S20

    Article  Google Scholar 

  • Scandella D, Kraeutler E, Vénien S (1997) Anticiper la qualité gustative des pêches et nectarines. Infos CTIFL 129:16–19 [In French]

    Google Scholar 

  • Schulze ED, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses of intact growing plants to changes in humidity. Planta 108:259–270

    Article  CAS  PubMed  Google Scholar 

  • Shackel KA, Buchner RP, Connell JH, Edstrom JP, Fulton AE, Holtz BA, Lampinen BD, Reil RO, Stewart WL, Viveros MA (2010) Midday stem water potential as a basis for irrigation scheduling. In: 5th National decennial irrigation conference proceedings. Phoenix, Arizona, USA. IRR109993. doi:10.13031/2013.35841

  • Tenhunen JD, Lange OL, Jahner D (1982) The control by atmospheric factors and water-stress of midday stomatal closure in arbutus-unedo growing in a natural macchia. Oecologia 5:165–169

    Article  Google Scholar 

  • Torrecillas A, Galego R, Pérez-Pastor A, Ruiz-Sánchez MC (1999) Gas exchange and water relations of young apricot plants under drought conditions. J Agric Sci 132:445–452. doi:10.1017/S0021859699006577

    Article  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by IRRIQUAL (EU-FP6-FOOD-CT-2006-023120) and SIRRIMED (KBBE-2009-1-2-03, Proposal No. 245159) projects. We are also grateful to two SENECA projects (05665/PI/07 and 11872/PI/09) and SENECA—Excelencia Científica (19903/GERM/15), Consolider Ingenio 2010 (MEC CSD2006-0067) and two CICYT projects (AGL2010-17553 and AGL2013-49047-C2-2-R) for providing funds to finance this research. We thank three anonymous reviewers whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Nicolás.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Additional information

Communicated by A. Ben-Gal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirás-Avalos, J.M., Pérez-Sarmiento, F., Alcobendas, R. et al. Using midday stem water potential for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions. Irrig Sci 34, 161–173 (2016). https://doi.org/10.1007/s00271-016-0493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-016-0493-9

Keywords

Navigation