Skip to main content

Advertisement

Log in

Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The simulation model VegSyst was calibrated and validated for tomato grown under plastic cover. Calibration was conducted with an autumn–winter soil-grown crop, and validation with five crops with differences in season, cropping media, and site. VegSyst accurately simulated daily dry matter production (DMP), N uptake, and ETc. Comparing simulated and measured values by linear regression, slope and intercept values were not statistically significantly different (P < 0.05) from 1 and 0, respectively. Slopes between simulated and measured values indicated average differences of 4, 2, and −1 % for DMP, N uptake, and ETc, respectively. Model performance was good with autumn–winter and spring cropping cycles, and in soil and substrate. A prototype decision support system (VegSyst-DSS) based on VegSyst was developed to calculate daily irrigation and N fertilizer requirements and nutrient solution [N] for fertigated tomato. N fertilizer requirements are based on crop N uptake and consider soil mineral N, and N mineralized from manure and soil OM and the N efficiency of each N source. Irrigation requirements are based on ETc and consider application efficiency and salinity. VegSyst-DSS requires very few inputs which are all readily available to farmers and advisors. Scenario analysis compared a scenario representative of local farming practice, where N supplied from soil is not considered, with scenarios with different amounts of N supplied from soil mineral N at planting and mineralization of soil OM and of manure. Relative to the scenario representative of farmer practice, VegSyst recommendations resulted in reductions of 34–65 % in fertilizer N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy

  • Anon. (1991) Council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J Eur Commun L135/1-8

  • Anon. (2008) Decreto 36/2008, de 5 de febrero, por el que se designan las zonas vulnerables y se establecen medidas contra la contaminación por nitratos de origen agrario. Boletin Oficial de la Junta de Andalucía (BOJA) 20 de febrero 2008, número 36, pp 5–14 (in Spanish)

  • Balasubramanian V, Alves B, Aulakh M, Bekunda M, Cai Z, Drinkwater L, Mugendi D, van Kessel C, Oenema O (2004) Crop, environmental and management factors affecting nitrogen use efficiency. In: Mosier AR, Syers KJ, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, pp 19–33

    Google Scholar 

  • Bonachela S, González A, Fernández MD (2006) Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig Sci 25:53–62

    Article  Google Scholar 

  • Cabrera FJ (2010) Caracterización y modelización de las componentes directa y difusa de la radiación solar en invernaderos. PhD dissertation, University of Almeria, Almeria, Spain (in Spanish)

  • Castilla N (2002) Current situation and future prospects of protected crops in the Mediterranean region. Acta Hortic 582:135–147

    Google Scholar 

  • Castilla N (2013) Greenhouse technology and management, 2nd edn. CABI, Oxfordshire

    Book  Google Scholar 

  • Castilla N, Hernández J (2005) The plastic greenhouse industry of Spain. Chron Hort 45:15–20

    Google Scholar 

  • Castilla N, Hernández J, Abou-Hadid AF (2004) Strategic crop and greenhouse management in mild winter climate areas. Acta Hortic 633:183–196

    Google Scholar 

  • Céspedes AJ, García MC, Pérez-Parra J, Cuadrado IM (2009) Caracterización de la Explotación Hortícola Protegida Almeriense. Fundación para la Investigación Agraria en la Provincia de Almería (FIAPA), Almería, Spain (in Spanish)

  • Consejería de Agricultura y Pesca (2011) Junta de Andalucía, Memoria Resumen Año 2011. Delegación Provincial de Almería. Almeria, Spain (in Spanish)

  • Dominguez Prats P (2013) Avances en el conocimiento de los acuíferos del Sur de Sierra de Gádor-campo de Dalías, mediante los trabajos de fase inicial del Programa de investigaciones de apoyo a su protección-regeneración. Abril de 2013. VI Seminario Técnico Agronómico de la Fundación Cajamar, Almería, Spain. http://www.fundacioncajamar.es/es/pdf/vi-seminario-tecnico-agronomico/ponencia-patricia-dominguez/ponencia-patricia-dominguez.pdf. Accessed 10 Oct 2013

  • Fernández MD, Orgaz F, Fereres E, López JC, Céspedes A, Pérez-Parra J, Bonachela S, Gallardo M (2001) Programación del riego de cultivos hortícolas bajo invernadero en el sudeste español. Cajamar (Caja Rural Intermediterránea), Almería, Spain (in Spanish)

  • Fernández MD, Bonachela S, Orgaz F, Thompson RB, López JC, Granados MR, Gallardo M, Fereres E (2010) Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 28:497–509

    Article  Google Scholar 

  • Fernández MD, Bonachela S, Orgaz F, Thompson RB, López JC, Granados MR, Gallardo M, Fereres E (2011) Erratum to: measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 29:91–92

    Article  Google Scholar 

  • Fink M, Scharpf HC (1993) N_Expert-a decision support system for vegetable fertilization in the field. Acta Hortic 339:67–74

    Google Scholar 

  • Gallardo M, Giménez C, Martínez-Gaitán C, Stöckle CO, Thompson RB, Granados MR (2011) Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration. Agric Water Manag 101:107–117

    Article  Google Scholar 

  • Gallardo M, Thompson RB, Fernández MD (2013) Water requirements and irrigation management in Mediterranean greenhouses: the case of the southeast coast of Spain. In: FAO-AGP and ISHS-CMPC (eds) Good agricultural practices for greenhouse crop vegetable crops: principles for Mediterranean climate areas. FAO, Rome, Italy, pp 109–136

  • Giller KE, Chalk P, Dobermann A, Hammond L, Heffer P, Ladha JK, Nyamudeza P, Maene L, Ssali H, Freney J (2004) Emerging technologies to increase the efficiency of use of fertilizer nitrogen. In: Mosier AR, Syers KJ, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, pp 35–51

    Google Scholar 

  • Giménez C, Gallardo M, Martínez-Gaitán C, Stöckle CO, Thompson RB, Granados MR (2013) VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system. Irrig Sci 31:465–477

    Article  Google Scholar 

  • Granados MR, Thompson RB, Fernández MD, Martínez-Gaitán C, Gallardo M (2013) Prescriptive–corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agric Water Manag 119:121–134

    Article  Google Scholar 

  • Jadoski S, Thompson RB, Peña-Fleitas M-T, Gallardo M (2013) Regional N balance for an intensive vegetable production system in South-Eastern Spain. In: Fontana E, Grignani C, Nicola S (eds) Book of abstracts of NEV 2013 international workshop on nitrogen, environment and vegetables, Turin, Italy, 15–17 April 2013, pp 50–51

  • Jeuffroy MH, Recous S (1999) Azodyn: a simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. Eur J Agron 10:129–144

    Article  Google Scholar 

  • Ju XT, Kou CL, Zhang FS, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut 143:117–125

    Article  CAS  PubMed  Google Scholar 

  • Le Bot J, Jeannequin B, Fabre R (2001) Impacts of N-deprivation on the yield and nitrogen budget of rockwool grown tomatoes. Agronomie 21:341–350

    Article  Google Scholar 

  • Machet JM, Dubrulle P, Louis P (1990) AZOBIL: a computer program for fertilizer N recommendations based on a predictive balance sheet method. In: Scaife A (ed) Proceedings of the 1st congress of the European society for agronomy, Paris, France, pp 2–21

  • Magán JJ, Gallardo M, Thompson RB, Lorenzo P (2008) Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric Water Manag 95:1041–1055

    Article  Google Scholar 

  • Martínez-Gaitán C (2013) Tools for improving nitrogen and irrigation management practices of vegetable crops grown under greenhouse. PhD Dissertation, University of Almería, Almería, Spain

  • Meisinger JJ, Schepers JS, Raun WR (2008a) Crop nitrogen requirements and fertilization. In: Schepers, JS, Raun WR (eds) Nitrogen in agricultural systems. Agronomy Monograph No. 49. American Society of Agronomy, Madison, WI, USA, pp 563–612

  • Meisinger JJ, Calderón FJ, Jenkinson DS (2008b) Soil nitrogen budgets. In: Schepers, JS, Raun WR (eds) Nitrogen in agricultural systems. Agronomy Monograph No. 49. American Society of Agronomy, Madison, WI, USA, pp 505–562

  • Montgomery D, Peck EA (1992) Introduction to linear regression analysis, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Nendel C (2009) Evaluation of best management practices for N fertilisation in regional field vegetable production with a small-scale simulation model. Eur J Agron 30:110–118

    Article  CAS  Google Scholar 

  • Pardossi A, Tognoni F, Incrocci L (2004) Mediterranean greenhouse technology. Chron Hortic 44:28–34

    Google Scholar 

  • Parneaudeau V, Jeuffroy MH, Machet JM, Reau R (2009) Methods for determining the nitrogen fertiliser requirements of some major arable crops. In: Proceedings of the international fertiliser society no. 661. International Fertiliser Society, York, UK

  • Pulido-Bosch A (2005) Recarga en la Sierra de Gádor e hidrogeoquímica de los aquíferos del Campo de Dalías. Escobar Impresores SL, El Ejido, Almería, Spain (in Spanish)

  • Pulido-Bosch A, Navarrete F, Martínez JF, Molina L, Sánchez F, Vallejos A, Martín W (1997) La contaminación en los acuíferos del Campo de Dalías y Delta del Andarax (Almería). In: Recursos Naturales y Medio Ambiente en el Sureste Peninsular. Instituto de Estudios Almerienses, Almería, Spain, pp 363–381 (in Spanish)

  • Rahn CR, Greenwood DJ, Draycott A (1996) Prediction of nitrogen fertiliser requirement with HRI WELL_N Computer Model. In: Cleemput V, Hofman OG, Vermoesen A (eds) Progress in nitrogen cycling. In: Proceedings 8th nitrogen workshop, Ghent, 5–8 September 1994, Kluwer, Dordrecht, The Netherlands, pp 255–258

  • Rahn CR, Zhang K, Lillywhite R, Ramos C, Doltra J, De Paz JM, Riley H, Fink M, Nendel C, Kristensen KT, Pedersen A, Piro F, Venezia A, Firth C, Schmutz U, Rayns F, Strohmeyers K (2010) EU-Rotate_N—a European decision support system—to predict environmental and economic consequences of the management of nitrogen fertilizer in crop rotations. Eur J Hortic Sci 75:20–32

    CAS  Google Scholar 

  • Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. In: Stewart BA, Nielsen DR (eds) Irrigation of agricultural crops. American Society of Agronomy, Madison, pp 1089–1142

    Google Scholar 

  • Schepers JS, Mosier AR (1991) Accounting for nitrogen in non-equilibrium soil-crop-systems. In: Follett RF, Keeney DR, Cruse RM (eds) Managing nitrogen for groundwater quality and farm profitability. Soil Science Society of America, Madison, pp 125–138

    Google Scholar 

  • Sonneveld C (2002) Composition of nutrient solutions. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamentals. Embryo Publications, Athens, pp 178–210

    Google Scholar 

  • Sonneveld C, Voogt W (2001) Chemical analysis in substrate systems and hydroponics—use and interpretation. Acta Hortic 548:247–260

    CAS  Google Scholar 

  • Stöckle CO, Kjelgaard J, Bellocchi G (2004) Evaluation of estimated weather data for calculating Penman–Monteith reference crop evapotranspiration. Irrig Sci 23:39–46

    Article  Google Scholar 

  • Suárez-Rey EM, Romero-Gámez M, Segura ML, Martín E, Cánovas G, Fernández M (2013) Research, transfer and training in Andalusia (Spain) for the efficient use of nitrogen in nitrate vulnerable zones. In: Fontana E, Grignani C, Nicola S (eds) Book of abstracts of NEV 2013 international workshop on nitrogen, environment and vegetables, Turin, Italy, 15–17 April 2013, pp 52–53

  • Tei F, Benincasa P, Guiducci M (2002) Critical nitrogen concentration in processing tomato. Eur J Agron 18:45–55

    Article  CAS  Google Scholar 

  • Thompson RB, Morse D, Kelling K, Lanyon L (1997) Computer programs that calculate manure application rates. J Prod Agric 10:58–69

    Article  Google Scholar 

  • Thompson RB, Martínez-Gaitán C, Gallardo M, Giménez C, Fernández MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manag 89:261–274

    Article  Google Scholar 

  • Thompson RB, Gallardo M, Rodríguez JS, Sánchez JA, Magán JJ (2013a) Effect of N uptake concentration on nitrate leaching from tomato grown in free-draining soilless culture under Mediterranean conditions. Sci Hortic-Amst 150:387–398

    Article  CAS  Google Scholar 

  • Thompson RB, Padilla FM, Gallardo M, Peña-Fleitas MT (2013b) Improved nitrogen management practices for vegetable production. In D’Haene K et al. (eds) Proceedings of NUTRIHORT conference, held in Ghent, Belgium, 16–18 September 2013, pp 16–22

  • Willmott C (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded with Project AGL2004-07399 granted by the Spanish Ministry of Education and Science and co-financed by FEDER, and with Project AGL2008-03774/AGR granted by Spanish Ministry of Science and Innovation and co-financed by FEDER. We thank the Experimental Station of the University of Almeria and the Research Station “Las Palmerillas” of the Cajamar Caja Rural for their excellent and considerable collaboration and assistance during the development of this work. M.T. Peña-Fleitas, A. Padilla-Saez, and C. Martínez-Gaitán are thanked for their excellent technical assistance with the field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gallardo.

Additional information

Communicated by R. Stirzaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, M., Thompson, R.B., Giménez, C. et al. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig Sci 32, 237–253 (2014). https://doi.org/10.1007/s00271-014-0427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-014-0427-3

Keywords

Navigation