Skip to main content
Log in

Comparative analysis of 31 reference evapotranspiration methods under humid conditions

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Evaluation of simple reference evapotranspiration (ETo) methods has received considerable attention in developing countries where the weather data needed to estimate ETo by the Penman–Monteith FAO 56 (PMF-56) model are often incomplete and/or not available. In this study, eight pan evaporation-based, seven temperature-based, four radiation-based and ten mass transfer-based methods were evaluated against the PMF-56 model in the humid climate of Iran, and the best and worst methods were selected from each group. In addition, two radiation-based methods for estimating ETo were derived using air temperature and solar radiation data based on the PMF-56 model as a reference. Among pan evaporation-based and temperature-based methods, the Snyder and Blaney–Criddle methods yielded the best ETo estimates. The ETo values obtained from the radiation-based equations developed here were better than those estimated by existing radiation-based methods. The Romanenko equation was the best model in estimating ETo among the mass transfer-based methods. Cross-comparison of the 31 tested methods showed that the five best methods as compared with the PMF-56 model were: the two radiation-based equations developed here, the temperature-based Blaney–Criddle and Hargreves-M4 equations and the Snyder pan evaporation-based equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht F (1950) DieMethoden zur Bestimmung Verdunstung der natürlichen Erdoberfläche. Arch Meteor Geoph Biokl Ser B2:1–38

    Article  Google Scholar 

  • Alexandris S, Kerkides P, Liakatas A (2006) Daily reference evapotranspiration estimates by the ‘‘Copais’’ approach. Agric Water Manage 82:371–386

    Article  Google Scholar 

  • Ali MH, Shui LT (2009) Potential evapotranspiration model for Muda irrigation project, Malaysia. Water Resour Manage 23:57–69

    Article  Google Scholar 

  • Alkaeed O, Flores C, Jinno K, Tsutsumi A (2006) Comparison of several reference evapotranspiration methods for Itoshima Peninsula Area, Fukuoka, Japan, vol 66, no. 1. Memoirs of the Faculty of Engineering, Kyushu University

  • Allen RG, Pruitt WO (1991) FAO-24 reference evapotranspiration factors. J Irrig Drain Eng ASCE 117(5):758–773

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper no. 56. FAO, Rome

  • Allen RG, Clemmens AJ, Burt CM, Solomon K, O’Halloran T (2005) Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. J Irrig Drain Eng ASCE 131(1):24–36

    Article  Google Scholar 

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Beselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman–Monteith method. Agric Water Manage 81:1–22

    Article  Google Scholar 

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. Soil conservation service technical paper 96, Soil conservation service. US Department of Agriculture, Washington

  • Brockamp B, Wenner H (1963) Verdunstungsmessungen auf den Steiner See bei Münster. Dt Gewässerkundl Mitt 7:149–154

    Google Scholar 

  • Cai J, Liu Y, Lei T, Pereira LS (2007) Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages. Agric For Meteorol 145:22–35

    Article  Google Scholar 

  • Chen D, Gao G, Xu C-Y, Guo J, Ren G (2005) Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Clim Res 28:123–132

    Article  CAS  Google Scholar 

  • Cuenca RH (1989) Irrigation system design: an engineering approach. Prentice-Hall, Englewood Cliffs, NJ, p 133

    Google Scholar 

  • Dalton J (1802) Experimental essays on the constitution of mixed gases; on the force of steam of vapour from waters and other liquids in different temperatures, both in a torricellian vacuum and in air on evaporation and on the expansion of gases by heat. Mem Manch Lit Philos Soc 5:535–602

    Google Scholar 

  • DehghaniSanij H, Yamamoto T, Rasiah V (2004) Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric Water Manage 64:91–106

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO irrigation and drainage. Paper no. 24 (rev.). FAO, Rome

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16:33–45

    Article  Google Scholar 

  • Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162

    Article  Google Scholar 

  • Grismer ME, Orang M, Snyder R, Matyac R (2002) Pan evaporation to reference evapotranspiration conversion methods. J Irrig Drain Eng ASCE 128(3):180–184

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • IRIMO (2007) Islamic Republic of Iran Meteorological Office. Data Center, Tehran, Iran

    Google Scholar 

  • Irmak S, Haman DZ, Jones JW (2002) Evaluation of Class A pan coefficients for estimating reference evapotranspiration in humid location. J Irrig Drain Eng ASCE 128(3):153–159

    Article  Google Scholar 

  • Irmak S, Irmak A, Jones JW, Howell TA, Jacobs JM, Allen RG, Hoogenboom G (2003a) Predicting daily net radiation using minimum climatological data. J Irrig Drain Eng ASCE 129(4):256–269

    Article  Google Scholar 

  • Irmak S, Irmak A, Allen RG, Jones JW (2003b) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng ASCE 129(5):336–347

    Article  Google Scholar 

  • Jensen ME, Haise HR (1963) Estimation of evapotranspiration from solar radiation. J Irrig Drain Div 89:15–41

    Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manual and reports on engineering practice no. 70. ASCE, New York, NY

    Google Scholar 

  • Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under non ideal conditions. J Irrig Drain Eng ASCE 123:394–400

    Article  Google Scholar 

  • Jones JW, Ritchie JT (1990) Crop growth models. Management of farm irrigation systems. In: Hoffman GJ, Howel TA, Solomon KH (eds), ASAE Monograph No. 9, ASAE, St. Joseph, Mich. pp. 63–89

  • Kashyap PS, Panda RK (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in sub-humid region. Agric Water Manage 50:9–25

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manage 95:553–565

    Article  Google Scholar 

  • Lopez-Urrea R, Martin de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manage 85:15–26

    Article  Google Scholar 

  • Mahringer W (1970) Verdunstungsstudien am Neusiedler See. Arch Met Geoph Biokl Ser B 18:1–20

    Article  Google Scholar 

  • Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288

    Google Scholar 

  • McGuinness JL, Bordne EF (1972) A comparison of lysimeter-derived potential evapotranspiration with computed values. Technical Bulletin 1452, Agricultural Research Service, US Department of Agriculture, Washington, DC

    Google Scholar 

  • Meyer A (1926) Über einige Zusammenhänge zwischen Klima und Boden in Europa. Chemie der Erde 2:209–347

    Google Scholar 

  • Orang M (1998) Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 Table, Unpublished Rep., Calif. Department of Water Resources, Sacramento

  • Penman HC (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A 193:120–145

    Article  CAS  Google Scholar 

  • Pereira AR, Villanova N, Pereira AS, Baebieri VA (1995) A model for the class-A pan coefficient. Agric Water Manage 76:75–82

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evapotranspiration using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Rohwer C (1931) Evaporation from free water surface. USDA Tech Null 217:1–96

    Google Scholar 

  • Romanenko VA (1961) Computation of the autumn soil moisture using a universal relationship for a large area. In: Proceedings, Ukrainian Hydrometeorological Research Institute, no. 3. Kiev

  • Sabziparvar AA, Tabari H (2010) Regional estimation of reference evapotranspiration in arid and semi-arid regions. J Irrig Drain Eng ASCE 136(10):724–731

    Article  Google Scholar 

  • Sabziparvar AA, Tabari H, Aeini A, Ghafouri M (2010) Evaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climates. Water Resour Manage 24:909–920

    Article  Google Scholar 

  • Schendel U (1967) Vegetationswasserverbrauch und -wasserbedarf. Habilitation, Kiel, p 137

    Google Scholar 

  • Sentelhas PC, Gillespie TJ, Santos EA (2010) Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric Water Manage 97:635–644

    Article  Google Scholar 

  • Singh VP (1989) Hydrologic systems, vol 2. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Singh VP, Xu C-Y (1997) Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol Process 11:311–323

    Article  Google Scholar 

  • Snyder RL (1992) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drain Eng ASCE 118(6):977–980

    Article  Google Scholar 

  • Stanhill G (2002) Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agric For Meteorol 112(3–4):233–236

    Article  Google Scholar 

  • Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manage 24:2311–2337

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011) Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J Hydrol Eng ASCE. doi:10.1061/(ASCE)HE.1943-5584.0000366

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng ASCE 131:73–84

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Trabert W (1896) Neue Beobachtungen über Verdampfungsgeschwindigkeiten. Meteorol Z 13:261–263

    Google Scholar 

  • Trajkovic S (2007) Hargreaves versus Penman–Monteith under Humid Condition. J Irrig Drain Eng ASCE 133:38–42

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manage 23:3057–3067

    Article  Google Scholar 

  • Turc L (1961) Evaluation des besoins en eau irrigation, l’evapotranspiration potentielle. Ann Agron 12:13–49

    Google Scholar 

  • WMO (1966) Measurement and estimation of evaporation and evapotranspiration. Tech. Pap. (CIMO-Rep) 83. Genf

  • Xing Z, Chow L, Meng F, Rees HW, Monteith J, Lionel S (2008) Testing reference evapotranspiration estimation methods using evaporation pan and modeling in Maritime region of Canada. J Irrig Drain Eng ASCE 134(4):417–424

    Article  Google Scholar 

  • Xu C-Y, Singh VP (2000) Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol Process 14:339–349

    Article  Google Scholar 

  • Xu C-Y, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manage 16:197–219

    Article  Google Scholar 

  • Yoder RE, Odhiambo LO, Wright WC (2004) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid southeast United States. Appl Eng Agric 21(2):197–202

    Google Scholar 

Download references

Acknowledgments

The authors wish to express a gratitude to the Islamic Republic of Iran Meteorological Organization (IRIMO) for access to the weather station data. We are also grateful to two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tabari.

Additional information

Communicated by A. Kassam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabari, H., Grismer, M.E. & Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31, 107–117 (2013). https://doi.org/10.1007/s00271-011-0295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-011-0295-z

Keywords

Navigation