Skip to main content

Advertisement

Log in

Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm−1 shifts negatively by −4.57 (±0.55) cm−1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.crystal.unito.it/vibs/beryl.

References

  • Aurisicchio C, Fioravanti G, Grubessi O, Zanazzi PF (1988) Reappraisal of the crystal chemistry of beryl. Am Miner 73:826–837

    Google Scholar 

  • Bray KL (2001) High pressure probes of electronic structure and luminescence properties of transition metal and lanthanide systems. In: Yersin H (ed) Transition metal and rare earth compounds. Springer, Berlin, Heidelberg, pp 1–94

  • Buchert J, Katz A, Alfano RR (1983) Laser action in emerald. IEE J Quantum Electron 19:1477–1478

    Article  Google Scholar 

  • Burns R (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Canny B, Chervin JD, Curie D, Gonzalez J, Berry D, Ho SA (1987) High pressure properties of some laser materials. In: Di Bartolo B (ed) Spectroscopy of solid-state laser-type materials. Springer, US, pp 431–449

  • Chopelas A, Nicol M (1982) Pressure dependence to 100 kilobars of the phonons of MgO at 90 and 295 K. J Geophys Res 87:8591–8597

    Article  Google Scholar 

  • Fan D, Xu J, Kuang Y, Li X, Li Y, Xie H (2015) Compressibility and equation of state of beryl (Be3Al2Si6O18) by using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Chem Miner 42:529–539

    Article  Google Scholar 

  • Finkelstein GJ, Dera PK, Duffy TS (2015) High-pressure phases of cordierite from single-crystal X-ray diffraction to 15 GPa. Am Miner 100:1821–1833

    Article  Google Scholar 

  • Fridrichová J, Bačík P, Bizovská V, Libowitzky E, Škoda R, Uher P, Ozdin D, Števko M (2016) Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia. Phys Chem Miner 43:419–437

    Article  Google Scholar 

  • Fujishiro I, Piermarini GJ, Block S, Munro RG (1982) Viscosities and glass transition pressures in the methanol–ethanol–water system. In: High pressure research in science and industry: proceedings of the 8th AIRAPT conference, vol 2, pp 608–611

  • Gaft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer, Berlin

    Google Scholar 

  • Gaudry E, Cabaret D, Brouder C, Letard I, Rogalev A, Wilhlem F, Jaouen N, Sainctavit P (2007) Relaxations around the substitutional chromium site in emerald: X-ray absorption experiments and density functional calculations. Phys Rev B 76:094110

    Article  Google Scholar 

  • Gibbs G, Breck D, Meagher E (1968) Structural refinement of hydrous and anhydrous synthetic beryl and emerald. Lithos 1:275–285

    Article  Google Scholar 

  • Hagemann H, Lucken A, Bill H, Gysler-Sanz J, Stalder HA (1990) Polarized Raman spectra of beryl and bazzite. Phys Chem Miner 17:395–401

    Article  Google Scholar 

  • Hazen RM, Au AY, Finger W (1986) High-pressure crystal chemistry of beryl (Be3Al2Si6O18) and euclase (BeAlSiO4OH). Am Miner 71:977–984

    Google Scholar 

  • Hemingway BS, Barton MD, Robie RA, Haselton HT (1986) Heat capacities and thermodynamic functions for beryl, Be3Al2Si6O18, phenakite, Be2SiO4, euclase, BeAlSiO4(OH), bertrandite Be4Si2O7(OH)2, and chrysoberyl BeAl2O4. Am Miner 71:557–568

    Google Scholar 

  • Hochella MF, Brown GE (1986) Structural mechanisms of anomalous thermal expansion of cordierite-beryl and other framework silicates. J Am Ceram Soc 69:13–18

    Article  Google Scholar 

  • Hoemmerich U, Bray KL (1995) Direct observation of anticrossing behaviour in a luminescent Cr3+-doped system. Phys Rev B 51:8595–8598

    Article  Google Scholar 

  • Hofmeister AM, Hoering TC, Virgo D (1987) Vibrational spectroscopy of beryllium aluminosilicates: heat capacity calculations from band assignments. Phys Chem Miner 14:205–224

    Article  Google Scholar 

  • Imbusch GF, Yen WM, Schawlow AL, McCumber DE, Sturge M (1964) Temperature dependence of the width and position of the 2E 4A2 fluorescence lines of Cr3+ and V2+ in MgO. Phys Rev 133:A1029–A1034

    Article  Google Scholar 

  • Jovanić BR (1997) High pressure and fluorescence lifetime of the 2E level in MgO:Cr3+. Phys Scr 56:477–479

    Article  Google Scholar 

  • Jovanić BR (2000) Effect of high pressure on fluorescence lifetime and position for R1 line in synthetic spinel MgAl2O4:Cr3+. Mater Sci Forum 352:247–250

    Article  Google Scholar 

  • Jovanić BR, Viana B, Radenković B, Despotović M, Panić B (2010) High-pressure optical studies of LMA: V2+. Mater Chem Phys 124:109–112

    Article  Google Scholar 

  • Kisliuk P, Moore CA (1967) Radiation from the 4T2 State of Cr3+ in ruby and emerald. Phys Rev 160:307–312

    Article  Google Scholar 

  • Klotz S, Chervin J-C, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Kottke T, Williams F (1983) Pressure dependence of the alexandrite emission spectrum. Phys Rev B 28:1923–1927

    Article  Google Scholar 

  • Koziarska B, Godlewski M, Suchocki A, Czaja M, Mazurak Z (1994) Optical properties of zoisite. Phys Rev B 50:297–300

    Article  Google Scholar 

  • Lai ST (1987) Highly efficient emerald laser. J Opt Soc Am B 4:1286–1290

    Article  Google Scholar 

  • Likhacheva AY, Goryainov SV, Krylov AS, Bul’bak TA, Prasad P (2012) Raman spectroscopy of natural cordierite at high water pressure up to 5 GPa. J Raman Spectrosc 43:559–563

    Article  Google Scholar 

  • Mao HK, Xu JA, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Mei Y, Peng RM, Chen BW, Zheng WC (2016) Local compressibilities of Cr3+ octahedral clusters in the natural and synthetic emerald crystals. Optik 127:5152–5154

    Article  Google Scholar 

  • Milberg ME, Blair HD (1977) Thermal expansion of cordierite. J Am Ceram Soc 60:372–373

    Article  Google Scholar 

  • Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M (2014a) Cordierite under hydrostatic compression: anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am Mineral 99:479–493

    Article  Google Scholar 

  • Miletich R, Scheidl KS, Schmitt M, Moissl AP, Pippinger T, Gatta GD, Schuster B, Trautmann C (2014b) Static elasticity of cordierite I: effect of heavy ion irradiation on the compressibility of hydrous cordierite. Phys Chem Miner 41:579–591

    Article  Google Scholar 

  • Morosin B (1972) Structure and thermal expansion of beryl. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:1899–1903

    Article  Google Scholar 

  • O’Bannon E, Williams Q (2016) A Cr3+ luminescence study of spodumene at high pressures: effects of site geometry, a phase transition and a level-crossing. Am Miner 101:1406–1413

    Article  Google Scholar 

  • Ohkura H, Hashimoto H, Mori Y, Chiba Y, Isotani S (1987) The luminescence and ESR of a synthetic emerald and the natural ones mined from Santa Terezinha in Brazil. Jpn J Appl Phys 26:1422–1428

    Article  Google Scholar 

  • Ollier N, Fuchs Y, Cavani O, Horn AH, Rossano S (2015) Influence of impurities on Cr3+ luminescence properties in Brazilian emerald and alexandrite. Eur J Miner 27:783–792

    Article  Google Scholar 

  • Parkin KM, Burns RG (1980) High temperature crystal field spectra of transition metal-bearing minerals: relevance to remote-sensed spectra of planetary surfaces. In: Lunar and planetary science conference proceedings, vol 11, pp 731–755

  • Piermarini GJ, Block S, Barnett JD (1973) Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys 44:5377–5382

    Article  Google Scholar 

  • Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774

    Article  Google Scholar 

  • Prencipe M, Nestola F (2005) Quantum-mechanical modeling of minerals at high pressures. The role of the Hamiltonian in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 32:471–479

    Article  Google Scholar 

  • Prencipe M, Nestola F (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 34:37–52

    Article  Google Scholar 

  • Prencipe M, Noel Y, Civalleri B, Roetti C, Dovesi R (2006) Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point. Phys Chem Miner 33:519–532

    Article  Google Scholar 

  • Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239

    Article  Google Scholar 

  • Putnis A, Bish DL (1983) The mechanism and kinetics of Al, Si ordering in Mg-cordierite. Am Miner 68:60–65

    Google Scholar 

  • Qin S, Liu J, Li H, Zhu X, Li X (2008) In-situ high-pressure X-ray diffraction of natural beryl. Chin J High Press Phys 22:1–5

    Google Scholar 

  • Quarles GJ, Suchocki A, Powell RC, Lai S (1988) Optical spectroscopy and four-wave mixing in emerald. Phys Rev B 38:9996–10006

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Sánchez-Alejo MA, Hernández-Alcántara JM, Jiménez C, Calderón T, García EC (2011) Optical spectroscopy and high pressure on emeralds: synthetic and natural. In: Proceedings of SPIE, the international society for optical engineering, vol 8011, pp 1–6

  • Sanz-Ortiz MN, Rodriguez F, Hernandez I, Valiente R, Kuck S (2010) Origin of the 2E–4T2 Fano-type resonance in Cr3+-doped LiCaAlF6: pressure-induced excited-state crossover. Phys Rev B 81:045114

    Article  Google Scholar 

  • Schlenker JL, Gibbs GV, Hill EG, Crews SS, Myers RH (1977) Thermal expansion coefficients for indialite, emerald, and beryl. Phys Chem Miner 1:243–255

    Article  Google Scholar 

  • Schmetzer K, Eysel HH (1974) Absorptions- and emissonsspektrum von V2+/V3+ in beryllen. Zeitschrift für Naturforsch A 29:1458–1460

    Google Scholar 

  • Shen Y, Riedener T, Bray KL (2000) Effect of pressure and temperature on energy transfer between Cr3+ and Tm3+ in Y3Al5O12. Phys Rev B 61:11460–11471

    Article  Google Scholar 

  • Sherriff B, Grundy D, Hartman JS, Hawthorne F, Cerny P (1991) The incorporation of alkalis in beryl: multi-nuclear MAS NMR and crystal-structure study. Can Miner 29:271–285

    Google Scholar 

  • Shinn MD, Tesar A (1992) Observation of temperature-dependent Cr3+–Nd3+ sensitization in fluoride glasses. J Lumin 51:189–195

    Article  Google Scholar 

  • Skvortsova V, Mironova-Ulmane N, Trinkler L, Merkulov V (2015) Optical properties of natural and synthetic beryl crystals. In: IOP conference series: materials science and engineering, vol 77, p 012034

  • Snytnikov VN, Stoyanovskii VO, Larina TV, Krivoruchko OP, Ushakov VA, Parmon VN (2008) Laser-induced luminescence of model Fe/Al2O3 and Cr/Al2O3 catalysts. Kinet Catal 49:291–298

    Article  Google Scholar 

  • Sugano S, Tanabe Y (1958) Absorption spectra of Cr3+ in Al2O3 part A. Theoretical studies of the absorption bands and lines. J Phys Soc Jpn 13:880–889

    Article  Google Scholar 

  • Syassen K (2008) Ruby under pressure. High Press Res 28:75–126

    Article  Google Scholar 

  • Taran MN, Langer K, Platonov AN, Indutny VV (1994) Optical absorption investigation of Cr3+ ion-bearing minerals in the temperature range 77–797 K. Phys Chem Miner 21:360–372

    Article  Google Scholar 

  • Taran MN, Ohashi H, Langer K, Vishnevskyy AA (2011) High-pressure electronic absorption spectroscopy of natural and synthetic Cr3+-bearing clinopyroxenes. Phys Chem Miner 38:345–356

    Article  Google Scholar 

  • Wamsley P, Bray K (1994) The effect of pressure on the luminescence of Cr3+:YAG. J Lumin 59:11–17

    Article  Google Scholar 

  • Williams Q, Jeanloz R (1985) Pressure shift of Cr3+-ion-pair emission lines in ruby. Phys Rev B 31:7449–7451

    Article  Google Scholar 

  • Wood DL, Nassau K (1967) Infrared spectra of foreign molecules in beryl. J Chem Phys 47:2220–2228

    Article  Google Scholar 

  • Xu J, Kuang Y, Zhang B, Liu Y, Fan D, Li X, Xie H (2016) Thermal equation of state of natural tourmaline at high pressure and temperature. Phys Chem Miner 43:315–326

    Article  Google Scholar 

  • Yamaga M, Henderson B (1991) Line shape and lifetimes of Cr3+ luminescence in silicate glasses. Phys Rev B 44:4853–4861

    Article  Google Scholar 

  • Yoon HS, Newnham RE (1973) The elastic properties of beryl. Acta Crystallogr Sect A 29:507–509

    Article  Google Scholar 

  • Zheng W-C (1995) Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy. J Phys Condens Matter 7:8351–8356

    Article  Google Scholar 

Download references

Acknowledgments

Constructive and insightful comments from M. Prencipe and an anonymous reviewer, and helpful discussions with M. Merlini and C.M. Beavers, greatly improved the quality of this manuscript. E. O’Bannon thanks Juan Diego Prieto for the emerald sample. We thank Dan Sampson for invaluable technical assistance with the Raman spectrometer and Rob Franks for help with the trace element analysis. Work was partially supported by NSF through EAR-1215745, and COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-57758. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl O’Bannon III.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Supplementary material 2 (DOCX 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Bannon, E., Williams, Q. Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa. Phys Chem Minerals 43, 671–687 (2016). https://doi.org/10.1007/s00269-016-0837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0837-2

Keywords

Navigation