Skip to main content
Log in

Twin formation in hematite during dehydration of goethite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Twin formation in hematite during dehydration was investigated using X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy (TEM). When synthetic goethite was heated at different temperatures between 100 and 800 °C, a phase transformation occurred at temperatures above 250 °C. The electron diffraction patterns showed that the single-crystalline goethite with a growth direction of [001]G was transformed into hematite with a growth direction of [100]H. Two non-equivalent structures emerged in hematite after dehydration, with twin boundaries at the interface between the two variants. As the temperature was increased, crystal growth occurred. At 800 °C, the majority of the twin boundaries disappeared; however, some hematite particles remained in the twinned variant. The electron diffraction patterns and high-resolution TEM observations indicated that the twin boundaries consisted of crystallographically equivalent prismatic (100) (010), and (1\(\bar{1}\)0) planes. According to the total energy calculations based on spin-polarized density functional theory, the twin boundary of prismatic (100) screw had small interfacial energy (0.24 J/m2). Owing to this low interfacial energy, the prismatic (100) screw interface remained after higher-temperature treatment at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Busca G, Daturi M, Finocchio E, Lorenzelli V, Ramis G, Willey RJ (1997) Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catal Today 33:239–249

    Article  Google Scholar 

  • Cahyono RB, Saito G, Yasuda N, Nomura T, Akiyama T (2014) Porous ore structure and deposited carbon type during integrated pyrolysis–tar decomposition. Energy Fuels 28:2129–2134

    Article  Google Scholar 

  • Coey JMD (1988) Magnetic properties of iron in soil iron oxides and clay minerals. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. Springer, Amsterdam, pp 397–466

    Chapter  Google Scholar 

  • Cornell RM, Schwertmann U (2004) The iron oxides. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken

    Google Scholar 

  • Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  Google Scholar 

  • Fabris S, Nufer S, Elsässer C, Gemming T (2002) Prismatic \(\sum {3(10\bar{1}0)}\) twin boundary in α-Al2O3 investigated by density functional theory and transmission electron microscopy. Phys Rev B 66:155415

  • Francombe M, Rooksby H (1959) Structure transformations effected by the dehydration of diaspore, goethite and delta ferric oxide. Clay Miner Bull 4:1–14

    Article  Google Scholar 

  • Gialanella S, Girardi F, Ischia G, Lonardelli I, Mattarelli M, Montagna M (2010) On the goethite to hematite phase transformation. J Therm Anal Calorim 102:867–873

    Article  Google Scholar 

  • Goss C (1987) The kinetics and reaction mechanism of the goethite to hematite transformation. Mineral Mag 51:437–451

    Article  Google Scholar 

  • Gualtieri AF, Venturelli P (1999) In situ study of the goethite–hematite phase transformation by real time synchrotron powder diffraction. Am Miner 84:895–904

    Article  Google Scholar 

  • Jia F, Ramirez-Muñiz K, Song S (2015) Mechanism of the formation of micropores in the thermal decomposition of goethite to hematite. Surf Interface Anal 47:535–539

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  • Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Kustova GN, Burgina EB, Sadykov VA, Poryvaev SG (1992) Vibrational spectroscopic investigation of the goethite thermal decomposition products. Phys Chem Miner 18:379–382

    Article  Google Scholar 

  • Lima-de-Faria J (1964) Dehydration of goethite and diaspore. Zeitschrift für Kristallographie Cryst Mater 119:176–203

    Article  Google Scholar 

  • Liu H, Chen T, Zou X, Qing C, Frost RL (2013) Thermal treatment of natural goethite: thermal transformation and physical properties. Thermochim Acta 568:115–121

    Article  Google Scholar 

  • Marinopoulos AG, Elsässer C (2000) Microscopic structure and bonding at the rhombohedral twin interface in α-Al2O3. Acta Mater 48:4375–4386

    Article  Google Scholar 

  • Marinopoulos AG, Nufer S, Elsässer C (2001) Interfacial structures and energetics of basal twins in α-Al2O3: first-principles density-functional and empirical calculations. Phys Rev B 63:165112

    Article  Google Scholar 

  • Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J Chem Phys 129:014103

    Article  Google Scholar 

  • Naono H, Fujiwara R (1980) Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH. J Colloid Interface Sci 73:406–415

    Article  Google Scholar 

  • Oosterhout G (1960) Morphology of synthetic sub-microscopic crystals of [alpha] and [gamma]FeOOH and of [gamma]Fe2O3 prepared from FeOOH. Acta Crystallogr 13:932–935

    Article  Google Scholar 

  • Palmer D (2009) CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396

    Article  Google Scholar 

  • Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107

    Article  Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT, Duong L (2002) Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim Acta Part A Mol Biomol Spectrosc 58:479–491

    Article  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, pp 98–100

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory. Wiley, Hoboken

    Book  Google Scholar 

  • Watari F, Van Landuyt J, Delavignette P, Amelinckx S (1979) Electron microscopic study of dehydration transformations. I. Twin formation and mosaic structure in hematite derived from goethite. J Solid State Chem 29:137–150

    Article  Google Scholar 

  • Watari F, Delavignette P, Van Landuty J, Amelinckx S (1983) Electron microscopic study of dehydration transformations. Part III: high resolution observation of the reaction process FeOOH → Fe2O3. J Solid State Chem 48:49–64

    Article  Google Scholar 

  • Yang H, Lu R, Downs RT, Costin G (2006) Goethite, [alpha]-FeO(OH), from single-crystal data. Acta Crystallogr Sect E 62:i250–i252

    Article  Google Scholar 

Download references

Acknowledgments

The TEM observations were conducted at Hokkaido University and supported by the “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genki Saito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, G., Kunisada, Y., Nomura, T. et al. Twin formation in hematite during dehydration of goethite. Phys Chem Minerals 43, 749–757 (2016). https://doi.org/10.1007/s00269-016-0831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0831-8

Keywords

Navigation