Skip to main content
Log in

Anisotropic mechanical properties of zircon and the effect of radiation damage

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson’s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510–1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772–4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson’s ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401–2412, 2000a; Farnan and Salje in J Appl Phys 89:2084–2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057–3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson EB, Burakov BE, Pazukhin EM (1993) High-uranium zircon from Chernobyl lavas. Radiochim Acta 60:149–151

    Article  Google Scholar 

  • Ballato A (1996) Poisson’s ratio for tetragonal, hexagonal, and cubic crystals. IEEE Trans Ultrason Ferroelectr Freq Control 43:56–62

    Article  Google Scholar 

  • Beirau T, Nix WD, Ewing RC, Schneider GA, Groat LA, Bismayer U (2016) Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: a nanoindentation and Raman spectroscopic study. Am Mineral 101:399–406

    Article  Google Scholar 

  • Burakov BE (1993) A study of high-uranium technogeneous zircon (Zr, U)SiO4 from Chernobyl “lavas” in connection with the problem of creating a crystalline matrix for high-level waste disposal. Proc Int Conf SAFE WASTE 93(2):19–33

    Google Scholar 

  • Burakov BE, Anderson EB (1999) Development of crystalline ceramic for immobilization of TRU wastes in V. G. Khlopin Radium Institute. In: JAERI-conference

  • Burakov BE, Hanchar JM, Zamoryanskaya MV, Garbuzov VM, Zirlin ZA (2002) Synthesis and investigation of Pu-doped single crystal zircon (Zr, Pu)SiO4. Radiochim Acta 90:95–97

    Article  Google Scholar 

  • Cazzani A, Rovati M (2005) Extrema of Young’s modulus for elastic solids with tetragonal symmetry. Int J Solids Struct 42:5057–5096

    Article  Google Scholar 

  • Chakoumakos BC, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science 236:1556–1559

    Article  Google Scholar 

  • Chakoumakos BC, Oliver WC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ α-decay event damage. Radiat Eff Defects Solids 118:393–403

    Article  Google Scholar 

  • Colombo M, Chrosch J, Salje EKH (1999) Annealing metamict zircon: a powder X-ray diffraction study of a highly defective phase. J Am Ceram Soc 82:2711–2716

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock forming minerals: orthosilicates. The Geological Society, London, p 918

    Google Scholar 

  • Ellsworth S, Navrotsky A, Ewing RC (1994) Energetics of radiation damage in natural zircon (ZrSiO4). Phys Chem Miner 21:140–149

    Article  Google Scholar 

  • Ewing RC (1999) Nuclear waste forms for actinides. Proc Natl Acad Sci 96:3432–3439

    Article  Google Scholar 

  • Ewing RC (2001) The design and evaluation of nuclear-waste forms: clues from mineralogy. Can Mineral 39:697–715

    Article  Google Scholar 

  • Ewing RC (2007a) Ceramic matrices for plutonium disposition. Prog Nucl Energy 49:635–643

    Article  Google Scholar 

  • Ewing RC (2007b) Displaced by radiation. Nature 445:161–162

    Article  Google Scholar 

  • Ewing RC (2011) Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Mineral Mag 75:2359–2377

    Article  Google Scholar 

  • Ewing RC, Lutze W, Weber WJ (1995) Zircon: a host-phase for the disposal of weapons plutonium. J Mater Res 10:243–246

    Article  Google Scholar 

  • Ewing RC, Weber WJ, Lutze W (1996) Crystalline ceramics: waste forms for the disposal of weapons plutonium. In: Merz ER, Walter CE (eds) Disposal of weapons plutonium. Kluwer Academic Publishers, Dordrecht, p 65

    Chapter  Google Scholar 

  • Exarhos GJ (1984) Induced swelling in radiation damaged ZrSiO4. Nucl Instrum Methods Phys Res B 1:538–541

    Article  Google Scholar 

  • Farnan I (1999) 29Si NMR characterization of the crystalline–amorphous transition in ZrSiO4. Phase Transit 69:47–60

    Article  Google Scholar 

  • Farnan I, Salje EKH (2001) The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance. J Appl Phys 89:2084–2090

    Article  Google Scholar 

  • Farnan I, Balan E, Pickard CJ, Mauri F (2003) The effect of radiation damage on local structure in the crystalline fraction of ZrSiO4: investigating the 29Si NMR response to pressure in zircon and reidite. Am Mineral 88:1663–1667

    Article  Google Scholar 

  • Farnan I, Cho H, Weber WJ (2007) Quantification of actinide α-radiation damage in minerals and ceramics. Nature 445:190–193

    Article  Google Scholar 

  • Faure G (1977) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Mineral 29:420–429

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176

    Article  Google Scholar 

  • Geisler T, Burakov BE, Zirlin V, Nikolaeva L, Pöml P (2005) A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava”. Eur J Mineral 17:883–894

    Article  Google Scholar 

  • Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837

    Article  Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Hawthorne FC, Groat LA, Raudsepp M, Ball NA, Kimata M, Spike F, Gaba R, Halden NM, Lumpkin GR, Ewing RC et al (1991) Alpha-decay damage in titanite. Am Mineral 76:370–396

    Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr A 8:291–300

    Article  Google Scholar 

  • Jäger E, Hunziker JC (1979) Lectures in isotope geology. Springer, Berlin

    Book  Google Scholar 

  • Joslin DL, Oliver WC (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res 5:123–126

    Article  Google Scholar 

  • Keller C (1963) Untersuchungen über die germanate und silicate des typs ABO4 der vierwertigen elemente thorium bis americium. Nukleonik 5:41–47

    Google Scholar 

  • Lenz C, Nasdala L (2015) A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am Mineral 100:1123–1133

    Article  Google Scholar 

  • Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  • Lorenzi RFL, Zorzi JE, Perottoni CA (2014) Effect of annealing on the elastic moduli of amorphous zirconium tungstate. J Non-Cryst Solids 403:102–106

    Article  Google Scholar 

  • Love AEH (1906) A treatise on the mathematical theory of elasticity, 2nd edn. Cambridge University Press Warehouse, Cambridge

    Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:119–138

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  Google Scholar 

  • Oliver WC, McCallum JC, Chakoumakos BC, Boatner LA (1994) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose. Radiat Eff Defects Solids Inc Plasma Sci Plasma Technol 132:131–141

    Article  Google Scholar 

  • Özkan H (1976) Effect of nuclear radiation on the elastic moduli of zircon. J Appl Phys 47:4772–4779

    Article  Google Scholar 

  • Özkan H, Cartz L, Jamieson JC (1974) Elastic constants of nonmetamict zirconium silicate. J Appl Phys 45:556–562

    Article  Google Scholar 

  • Palenik CS, Nasdala L, Ewing RC (2003) Radiation damage in zircon. Am Mineral 88:770–781

    Article  Google Scholar 

  • Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A 253:151–159

    Article  Google Scholar 

  • Pidgeon RT, Nasdala L, Todt W (1998) Determination of radiation damage ages on parts of zircon grains by Raman microprobe: implications for annealing history and U–Pb stability. Mineral Mag 62A:1174–1175

    Article  Google Scholar 

  • Ríos S, Salje EKH, Zhang M, Ewing RC (2000a) Amorphization in zircon: evidence for direct impact damage. J Phys Condens Matter 12:2401–2412

    Article  Google Scholar 

  • Ríos S, Malcherek T, Salje EKH, Domeneghetti C (2000b) Localized defects in radiation-damaged zircon. Acta Crystallogr B Struct Sci 56:947–952

    Article  Google Scholar 

  • Roberts J, Gaugliardo P, Farnan I, Zhang M, Vance ER, Davis J, Karatchevtseva I, Knott RB, Mudie S, Buckman SJ, Sullivan JP (2016) Positron annihilation lifetime study of radiation-damaged natural zircons. J Nucl Mater 471:44–50

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) The structure of zircon: a comparison with garnet. Am Mineral 56:782–790

    Google Scholar 

  • Salje EKH (2006) Elastic softening of zircon by radiation damage. Appl Phys Lett 89:131902

    Article  Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116

    Article  Google Scholar 

  • Salje EKH, Taylor RD, Safarik DJ, Lashley JC, Groat LA, Bismayer U, Evans RJ, Friedman R (2012) Evidence for direct impact damage in metamict titanite CaTiSiO5. J Phys Condens Matter 24:052202

    Article  Google Scholar 

  • Smye KM, Brigden C, Vance ER, Farnan I (2014) Quantification of α-particle radiation damage in zircon. Am Mineral 99:2095–2104

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  • Speer JA (1980) The actinide orthosilicates. In: Ribbe PH (eds) Reviews in mineralogy and geochemistry, orthosilicates, vol 5. Mineralogical Society of America, Chantilly, VA, pp 113–135

    Google Scholar 

  • Speer JA, Cooper BJ (1982) Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates. Am Mineral 67:804–808

    Google Scholar 

  • Trachenko KO, Dove MT, Salje EKH (2001) Atomistic modelling of radiation damage in zircon. J Phys Condens Matter 13:1947–1959

    Article  Google Scholar 

  • Walter KH (1965) Ternäre Oxide des drei-bis-sechswertigen Americiums. Kernforschungszentrum Karlsruhe, Gesellschaft für Kernforschung M.B.H., Karlsruhe

  • Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697

    Article  Google Scholar 

  • Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiat Eff Defects Solids 115:341–349

    Article  Google Scholar 

  • Weber WJ (1993) Alpha-decay-induced amorphization in complex silicate structures. J Am Ceram Soc 76:1729–1738

    Article  Google Scholar 

  • Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods in Phys Res B Beam Interact Mater Atoms 166:98–106

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, de la Rubia TD, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484

    Article  Google Scholar 

  • Weber WJ, Devanathan R, Meldrum A, Boatner LA, Ewing RC, Wang LM (1999) The effect of temperature and damage energy on amorphization in zircon. Mater Res Soc Symp Proc 540:367–372

    Article  Google Scholar 

  • Zhang M, Salje EKH (2001) Infrared spectroscopic analysis of zircon: radiation damage and the metamict state. J Phys Condens Matter 13:3057–3071

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000a) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12:1915–1925

    Article  Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schluter J, Ewing RC (2000b) Annealing of alpha-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131–3148

    Article  Google Scholar 

  • Zhang M, Salje EKH, Ewing RC, Farnan I, Ríos S, Schluter J, Leggo P (2000c) Alpha-decay damage and recrystallization in zircon: evidence for an intermediate state from infrared spectroscopy. J Phys Condens Matter 12:5189–5199

    Article  Google Scholar 

  • Zhang M, Salje EKH, Ewing RC (2002) Infrared spectra of Si–O overtones, hydrous species, and U ions in metamict zircon: radiation damage and recrystallization. J Phys Condens Matter 14:3333–3352

    Article  Google Scholar 

  • Zhang M, Salje EKH, Ewing RC, Daniel P, Geisler T (2004) Applications of near-infrared FT-Raman spectroscopy in metamict and annealed zircon: oxidation state of U ions. Phys Chem Mineral 31:405–414

    Article  Google Scholar 

  • Zhang M, Boatner LA, Salje EKH, Honda S, Ewing RC (2008a) Pb+ irradiation of synthetic zircon (ZrSiO4): infrared spectroscopic investigation. Am Mineral 93:1418–1423

    Article  Google Scholar 

  • Zhang M, Boatner LA, Salje EKH, Ewing RC, Daniel P, Weber WJ, Zhang YW, Farnan I (2008b) Micro-Raman and micro-infrared spectroscopic studies of Pb- and Au-irradiated ZrSiO4: optical properties, structural damage, and amorphization. Phys Rev B 77:144110

    Article  Google Scholar 

Download references

Acknowledgments

The work leading to this publication was supported by the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF) and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 605728 (P.R.I.M.E.—Postdoctoral Researchers International Mobility Experience). Financial support by the University of Hamburg is gratefully acknowledged. Research at the Oak Ridge National Laboratory for one author (LAB) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The constructive comments and helpful suggestions of L.A. Groat and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Beirau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beirau, T., Nix, W.D., Bismayer, U. et al. Anisotropic mechanical properties of zircon and the effect of radiation damage. Phys Chem Minerals 43, 627–638 (2016). https://doi.org/10.1007/s00269-016-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0822-9

Keywords

Navigation