Skip to main content

Advertisement

Log in

Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bear IJ, Turnbull AG (1965) Heats of formation of beryllium compounds. J Phys Chem 69:2828–2833

    Article  Google Scholar 

  • Bindi L, Nishi M, Tsuchiya J, Irifune T (2014) Crystal chemistry of dense hydrous magnesium silicates: the structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000°C. Am Mineral 99:1802–1805

    Article  Google Scholar 

  • Brandenburg K, Putz H (2009) Endeavour. Crystal Impact GbR, Bonn, Germany

  • Brown PL, Ekberg C (2016) Alkaline earth metals: beryllium, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Dera P (2007) GSE_ADA data analysis program for monochromatic single crystal diffraction with area detector. GSECARS, Chicago

    Google Scholar 

  • Dera P, Lazarz JD, Prakapenka VB, Barkley M, Downs RT (2011) New insights into the high-pressure polymorphism of SiO2 cristobalite. Phys Chem Minerals 38:527–529

    Article  Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Howard RJ, Puschmann JAK (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  • Dove MT (1997) Theory of displacive phase transitions in minerals. Am Mineral 82:213–244. doi:10.2138/am-1997-3-401

    Article  Google Scholar 

  • Dove MT, Craig MS, Keen DA, Marshall WG, Redfern SAT, Trachenko KO, Tucker MG (2000) Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2. Mineral Mag 64:569–576

    Article  Google Scholar 

  • Downs RT, Hall-Wallace M (2003) XtalDraw. Am Mineral 88:247–250

    Article  Google Scholar 

  • Downs RT, Palmer DC (1994) The pressure behavior of α-cristobalite. Am Mineral 79:9–14

    Google Scholar 

  • Friedrich A, Kunz M, Miletich R (2002) High-pressure behavior of Ba(OH)2: phase transitions and bulk modulus. Phys Rev B 66:1–8

    Article  Google Scholar 

  • Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. International union of crystallography monographs on crystallography, vol 23. Oxford University Press, UK

  • Goncharov AF, Struzhkin VV, Somayazulu MS, Hemley RJ, Mao HK (1996) Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273:218–220

    Article  Google Scholar 

  • Grabowski S (ed) (2006) Hydrogen bonding—new insights. Challenges and advanced in computational chemistry and physics, vol 3. Springer, The Netherlands

    Google Scholar 

  • Haines J, Cambon O (2004) The effects of pressure, temperature, and composition on the crystal structures of α-quartz homeotypes. Z Kristallogr 219:314–323

    Google Scholar 

  • Haines J, Leger JM, Gorelli F, Hanfland M (2001) Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett 87:155503

    Article  Google Scholar 

  • Hatch DM, Ghose S, Bjorkstam JL (1994) The α-β phase transition in AlPO4 cristobalite: symmetry analysis, domain structure and transition dynamics. Phys Chem Miner 21:67–77. doi:10.1007/BF00205217

    Article  Google Scholar 

  • Hazen RM, Downs RT (2000) High-temperature and high-pressure crystal chemistry. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Hushur A, Manghnani MH, Smyth JR, Williams Q, Hellebrand E, Lonappan D, Ye Y, Dera P, Frost DJ (2011) Hydrogen bond symmetrization and equation of state of phase D. J Geophys Res Solid Earth. doi:10.1029/2010JB008087

  • Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. In: Reviews in mineralogy and geochemistry, vol 62. Mineralogical Society of America, pp 321–342

  • Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in synthetic and natural coesite. Am Mineral 88:1436–1445

    Article  Google Scholar 

  • Kusaba K, Kikegawa T (2008) Phase transitions of Zn(OH)2 under high pressure and high temperature. Solid State Commun 148:382–385

    Article  Google Scholar 

  • Kusaba K, Yagi T, Yamaura J, Miyajima N, Kikegawa T (2007) Single-crystal to single-crystal phase transition with a large deformation in Zn(OH)2 under high-pressure. Chem Phys Lett 437:61–65

    Article  Google Scholar 

  • Kusaba K, Yagi T, Yamaura J, Gotou H, Kikegawa T (2010) Structural consideration of phase transitions in Zn(OH)2 under high pressure. J Phys Conf Ser 2015:012001

    Article  Google Scholar 

  • Lakshtanov DL, Sinogeikin SV, Litasov KD, Prakapenka VB, Hellwig H, Wang J, Sanches-Valle C, Perrillat J-P, Chen B, Somayazulu M (2007) The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc Natl Acad Sci 104:13588–13590

    Article  Google Scholar 

  • Lathe C, Koch-Müller M, Wirth R, Van Westrenen W, Mueller H-J, Schilling F, Lauterjung J (2005) The influence of OH in coesite on the kinetics of the coesite-quartz phase transition. Am Mineral 90:36–43. doi:10.2138/am.2005.1662

    Article  Google Scholar 

  • Lin J, Gregoryanz E, Struzhkin V, Somayazulu M, Mao H, Hemley RJ (2005) Melting behavior of H2O at high pressures and temperatures. Geophys Res Lett 32:1–4

    Google Scholar 

  • Liu Z, Lager GA, Hemley RJ, Ross NL (2003) Synchrotron infrared spectroscopy of OH-chondrodite and OH-clinohumite at high pressure. Am Mineral 88:1412–1415

    Article  Google Scholar 

  • Lutz HD, Jung C, Mortel R, Jacobs H, Stahl R (1998a) Hydrogen bonding in solid hydroxides with strongly polarizing metal ions, β-Be(OH)2 and ε–Zn(OH)2. Spectrochim Acta Part A 54:893–901

    Article  Google Scholar 

  • Lutz HD, Jung C, Mörtel R, Jacobs H, Stahl R (1998b) Hydrogen bonding in solid hydroxides with strongly polarising metal ions, β-Be(OH)2 and ε-Zn(OH)2. Spectrochim Acta Part A Mol Biomol Spectrosc 54:893–901. doi:10.1016/S1386-1425(98)00017-1

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Marques M, Acklands GJ, Loveday JS (2009) Nature and stability of ice X. High Press Res 29:208–211

    Article  Google Scholar 

  • Miletich R (2006) High-pressure polymorphism, phase transition and elastic behaviour of behoite, Be(OH)2. Paper presented at the 19th General Meeting of the International Mineralogical Association, Kobe, Japan

  • Mitra S (2004) Developments in geochemistry. In: High pressure geochemistry and mineral physics, 1st edn. Basics for planetology and geo-material science, vol 9. Elsevier Science, New York, pp 67–70, 840–847

  • Müller U (2006) Inorganic Structural Chemistry, 2nd edn. Wiley, New York

  • Nadezhina TN, Pushcharovskii DY, Rastsvetaeva RK, Voloshin AV, Burshtein IF (1989) Crystal structure of a new natural form of Be(OH)2. Dokl Akad Nauk SSSR 305:95–98

    Google Scholar 

  • Palmer DC, Finger LW (1994) Pressure-induced phase transition in cristobalite: an X-ray powder diffraction study to 4.4 GPa. Am Mineral 79:1–8

    Google Scholar 

  • Pletnev RN, Kiiko VS, Makurin YN, Nepryakhin AA (2005) Proton magnetic resonance and the state of hydrogen in beryllium hydroxide. Refract Ind Ceram 46:273–275. doi:10.1007/s11148-006-0023-z

    Article  Google Scholar 

  • Prewitt CT, Downs RT (1998) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. In: Hemley RJ (ed) Reviews in mineralogy, vol 37. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Schmidt MW, Finger LW, Angel RJ, Dinnebier RE (1998) Synthesis, crystal structure, and phase relations of AlSiO3OH, a high-pressure hydrous phase. Am Mineral 83:881–888

    Article  Google Scholar 

  • Sheldrick G (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  Google Scholar 

  • Simonov MA, Egorov-Tismenko YK, Belov NV (1975) Utochnennaya kristallicheskaya struktura chkalovita Na2Be[Si2O6]. Dokl Akad Nauk SSSR 225:1319–1322

    Google Scholar 

  • Spektor K, Nylen J, Stoyanov E, Navrotsky A, Hervig RL, Leinenweber K, Holland GP, Häussermann U (2011) Ultrahydrous stishovite from high-pressure hydrothermal treatment of SiO2. Proc Natl Acad Sci USA 108:20918–20922. doi:10.1073/pnas.1117152108

    Article  Google Scholar 

  • Stahl R, Jung C, Lutz HD, Kockelmann W, Jacobs H (1998) Kristallstrukturen und Wasserstoffbrueckenbindungen bei β-Be(OH)2 und ε-Zn(OH)2. Z Anorg Chem 624:1130–1136

    Article  Google Scholar 

  • Tolédano P, Dmitriev V (1996) Phenomenological theory of first-order phase transitions. In: Reconstructive phase transitions: in crystals and quasicrystals. World Scientific, Singapore, pp 1–142. doi:10.1142/9789812830715_0001

  • Tsuchiya J (2013) First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. Geophys Res Lett 40:4570–4573

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Tsuneyuki S (2005) First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am Mineral 90:44–49. doi:10.2138/am.2005.1628

    Article  Google Scholar 

  • Wicks J, Duffy TS (2015) Crystal structures of minerals in the lower mantle. AGU Books, pp 8–9

  • Yoshino T, Shimojuku A, Li D (2013) Electrical conductivity of stishovite as a function of water content. Phys Earth Planet Inter 227:48–54

    Article  Google Scholar 

  • Zhang G-Q, Xu D-P, Song G-X, Xue Y-F, Li L, Wang D-Y, Su W-H (2009) Effect of Si–OH on the transformation of amorphous SiO2 to coesite. J Alloy Compd 476:L4–L7

    Article  Google Scholar 

Download references

Acknowledgments

All of the experiments described in this paper were conducted by M. Barkley and were part of her Ph.D. thesis research, and the main conclusion of this work was described therein. H. Shelton conducted all structure refinements and comparative analysis. All authors contributed to writing the manuscript. The authors gratefully acknowledge the support of this study from the Chevron Corporation, BP p. l. c., the University of Arizona Galileo Circle, the Tucson Gem and Mineral Society, and Carnegie-DOE Alliance Center under cooperative agreement DE FC52-08NA28554. Development of the GSE_ADA software used for data analysis is supported by NSF Grant EAR1440005. We also thank Prof. M. Rieder and two anonymous reviewers for their keen editing and constructive criticism of this work. Portions of this project were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-0622171) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Shelton.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelton, H., Barkley, M.C., Downs, R.T. et al. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2 . Phys Chem Minerals 43, 571–586 (2016). https://doi.org/10.1007/s00269-016-0818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0818-5

Keywords

Navigation