Skip to main content

Advertisement

Log in

Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The stability of the high-pressure CaCO3 calcite (cc)-related polymorphs was studied in experiments that were performed in conventional diamond anvil cells (DAC) at room temperature as a function of pressure up to 30 GPa as well as in internally heated diamond anvil cells (DAC-HT) at pressures and temperatures up to 20 GPa and 800 K. To probe structural changes, we used Raman and FTIR spectroscopy. For the latter, we applied conventional and synchrotron mid-infrared as well as synchrotron far-infrared radiation. Within the cc-III stability field (2.2–15 GPa at room temperature, e.g., Catalli and Williams in Phys Chem Miner 32(5–6):412–417, 2005), we observed in the Raman spectra consistently three different spectral patterns: Two patterns at pressures below and above 3.3 GPa were already described in Pippinger et al. (Phys Chem Miner 42(1):29–43, 2015) and assigned to the phase transition of cc-IIIb to cc-III at 3.3 GPa. In addition, we observed a clear change between 5 and 6 GPa that is independent of the starting material and the pressure path and time path of the experiments. This apparent change in the spectral pattern is only visible in the low-frequency range of the Raman spectra—not in the infrared spectra. Complementary electronic structure calculations confirm the existence of three distinct stability regions of cc-III-type phases at pressures up to about 15 GPa. By combining experimental and simulation data, we interpret the transition at 5–6 GPa as a re-appearance of the cc-IIIb phase. In all types of experiments, we confirmed the transition from cc-IIIb to cc-VI at about 15 GPa at room temperature. We found that temperature stabilizes cc-VI to lower pressure. The reaction cc-IIIb to cc-VI has a negative slope of −7.0 × 10−3 GPa K−1. Finally, we discuss the possibility of the dense cc-VI phase being more stable than aragonite at certain pressure and temperature conditions relevant to the Earth’s mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams DM, Willimas AD (1980) Vibrational spectroscopy at very high pressures. Part 26. An infrared study of the metastable phases of CaCO3. J Chem Soc Dalton 8:1482–1486

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. PNAS 108:5184–5187

    Article  Google Scholar 

  • Boulard E, Pan D, Galli G, Liu Z, Mao WL (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun 6:6311

    Article  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • Bridgman PW (1939) The high pressure behavior of miscellaneous minerals. Am J Sci 237:7–18

    Article  Google Scholar 

  • Caracas R, Bobocioiu E (2011) The WURM project - a freely available web-based repository of computed physical data for minerals. Am Miner 96:437–443

    Article  Google Scholar 

  • Carteret C, De la Pierre M, Dossot M, Pascale F, Erba A, Dovesi R (2013) The vibrational spectrum of CaCO3 aragonite: a combined experimental and quantum-mechanical investigation. J Chem Phys 138:014201

    Article  Google Scholar 

  • Catalli K, Williams Q (2005) A high-pressure phase transition of calcite-III. Am Mineral 90(10):1679–1682

    Article  Google Scholar 

  • Catalli K, Santillán J, Williams Q (2005) A high pressure infrared spectroscopic study of PbCO3-cerussite: constraints on the structure of the post-aragonite phase. Phys Chem Miner 32(5–6):412–417

    Article  Google Scholar 

  • Cerantola V, McCammon C, Kupenko I, Kantor I, Marini C, Wilke M, Ismailova L, Solopova N, Chumakov A, Pascarelli S, Dubrovinsky L (2015) High-pressure spectroscopic study of Siderite (FeCO3) with focus on spin crossover. Am Mineral 100:2670–2681

    Article  Google Scholar 

  • Chaney J, Santillán JD, Knittle E, Williams Q (2014) A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures. Phys Chem Miner 42(1):83–93

    Article  Google Scholar 

  • Datchi F, Dewaele A, Loubeyre P, Letoullec R, Le Godec Y, Canny B (2007) Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Press Res 27:447–463

    Article  Google Scholar 

  • Farfan G, Wang S, Ma H, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Mineral 97(8–9):1421–1426

    Article  Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18

    Google Scholar 

  • Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368

    Article  Google Scholar 

  • Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann DR, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira MJT, Onida G, Pouillon Y, Rangel T, Rignanese GM, Sangalli D, Shaltaf R, Torrent M, Verstraete MJ, Zerah G, Zwanziger JW (2009) ABINIT: First-principles approach of materials and nanosystem properties. Comput Phys Comm 180:2582–2615

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427(6969):60–63

    Article  Google Scholar 

  • Jahn S, Kowalski PM (2014) Theoretical approaches to structure and spectroscopy of Earth materials. Rev Mineral Geochem 78:691–743

    Article  Google Scholar 

  • Jamieson JC (1957) Introductory studies of high-pressure polymorphism to 24,000 bars by x-ray diffraction by some comments on calcite II. J Geol 65:334–343

    Article  Google Scholar 

  • Jing Q, Wu Q, Liu Y, Zhang Y, Liu S, Liu L, J-a Xu, Bi Y (2013) Effect of pressure and temperature on the wavelength shift of the fluorescence line of SrB4O7:Sm2+ scale. High Press Res 33(4):725–733

    Article  Google Scholar 

  • Koch-Müller M, Speziale S, Deon F, Mrosko M, Schade U (2011) Stress-induced proton disorder in hydrous ringwoodite. Phys Chem Miner 38(1):65–73

    Article  Google Scholar 

  • Koch-Müller M, Mrosko M, Gottschalk M, Schade U (2012) Pressure-induced phase transitions in ilvaite studied by in situ micro-FTIR spectroscopy. Eur J Mineral 24(5):831–838

    Article  Google Scholar 

  • Kraft S, Knittle E, Williams Q (1991) Carbonate stability in the Earth’s mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J Geophys Res 96(B11):17997–18009

    Article  Google Scholar 

  • Kulshreshtha C, Cho SH, Jung YS, Sohn K (2006) Deep red color emission in an Sm2+-doped SrB4O7 phosphor. Proc ASID 6:294–296

    Google Scholar 

  • Lin CC, Liu LG (1997) High pressure phase transformations in aragonite-type carbonates. Phys Chem Miner 24:149–157

    Article  Google Scholar 

  • Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral 75:801–806

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Merlini M, Hanfland M, Crichton WA (2012) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333–334:265–271

    Article  Google Scholar 

  • Merlini M, Crichton WA, Chantel J, Guignard J, Poli S (2014) Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3 at high pressure. Mineral Mag 78(2):225–233

    Article  Google Scholar 

  • Merrill L, Bassett WA (1975) The high-pressure structure of CaCO3 (II), a high pressure metastable phase of calcium carbonate. Acta Cryst B31:343–349

    Article  Google Scholar 

  • Minch R, Dubrovinsky L, Kurnosov A, Ehm L, Knorr K, Depmeier W (2010a) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Phys Chem Miner 37(1):45–56

    Article  Google Scholar 

  • Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski LA, Parise JB, Lee Y, Dubrovinsky L, Depmeier W (2010b) High-pressure behavior of otavite (CdCO3). J Alloy Compd 508(2):251–257

    Article  Google Scholar 

  • Mirwald P (1976) A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure. Contrib Miner Petrol 59:33–40

    Article  Google Scholar 

  • Mrosko M, Koch-Müller M, Schade U (2011) In-situ mid/far micro-FTIR spectroscopy to trace pressure-induced phase transitions in strontium feldspar and wadsleyite. Am Mineral 96(11–12):1748–1759

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241(1–2):95–103

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273(1–2):38–47

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  Google Scholar 

  • Pippinger T, Miletich R, Merlini M, Lotti P, Schouwink P, Yagi T, Crichton WA, Hanfland M (2015) Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys Chem Miner 42(1):29–43

    Article  Google Scholar 

  • Raju SV, Zaug JM, Chen B, Yan J, Knight JW, Jeanloz R, Clark SM (2011) Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature. J Appl Phys 110(2):023521–023528

    Article  Google Scholar 

  • Santillán J (2003) Dolomite-II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett 30(2):1054. doi:10.1029/2002gl016018

    Article  Google Scholar 

  • Santillán J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3; comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Inter 143–144:291–304

    Article  Google Scholar 

  • Santillán J, Catalli K, Williams Q (2005) An infrared study of carbon-oxygen bonding in magnesite to 60 GPa. Am Mineral 90:1669–1673

    Article  Google Scholar 

  • Spivak A, Solopova M, Cerantola V, Bykova E, Zakharchenko E, Dubrovinsky L, Litvin Y (2014) Phys Chem Miner 41:633–638

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86(9):997–1002

    Article  Google Scholar 

  • Tyburczy JA, Ahrens TJ (1986) Dynamic compression and volatile release of carbonates. J Geophys Res 91(B5):4730–4744

    Article  Google Scholar 

  • Valenzano L, Noel Y, Orlando R, Zicovich-Wilson CM, Ferrero M, Dovesi R (2007) Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theor Chem Acc 117:991–1000

    Article  Google Scholar 

  • Veithen M, Gonze X, Ghosez P (2005) Nonlinear optical susceptibilities, Raman efficiencies, and electrooptic tensors from first-principles density functional perturbation theory. Phys Rev B 71:125107

    Article  Google Scholar 

  • Wenk H-R, Bulakh A (2004) Minerals. Their constitution and origin. Cambridge University Press, Cambridge. ISBN 0 521 82238 6

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society Monograph, London, pp 227–279

    Chapter  Google Scholar 

  • Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite III at high-pressures. Am Mineral 77:1158–1165

    Google Scholar 

  • Wittlinger J et al (1997) High-pressure study of h.c.p.-argon. Acta Crystallogr A B53:745–749

    Article  Google Scholar 

Download references

Acknowledgments

We thank Reiner Schulz and Andreas Ebert for technical support. We thank HZB for the allocation of synchrotron radiation beamtime. This study was partly supported by a Grant from Deutsche Forschungsgemeinschaft within the Research Unit FOR2125 under Grant KO1260/16. Part of the simulations was performed at the supercomputer JUROPA at Jülich Supercomputing Centre (JSC) within the framework of NIC Grant HPO15. We thank two anonymous reviewers for their very useful comments and suggestions, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Koch-Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 kb)

Supplementary material 2 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch-Müller, M., Jahn, S., Birkholz, N. et al. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys Chem Minerals 43, 545–561 (2016). https://doi.org/10.1007/s00269-016-0815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0815-8

Keywords

Navigation