Skip to main content
Log in

Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst–Einstein equation is compared with previous experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrens TJ (1995) Mineral physics and crystallography: a handbook of physical constants. AGU reference shelf 2, AGU, Washington

  • Alexopoulos KD, Varotsos PA (1981) Calculation of diffusion coefficients at any temperature and pressure from a single measurement: II. Heterodiffusion. Phys Rev B 24:3606–3609

    Article  Google Scholar 

  • Angel RJ (2004) Equations of state of plagioclase feldspars. Contrib Mineral Petrol 146:506–512

    Article  Google Scholar 

  • Behrens H, Johannes W, Schmalzried H (1990) On the mechanisms of cation diffusion processes in ternary feldspars. Phys Chem Mineral 17:62–78

    Article  Google Scholar 

  • Benusa M, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120

    Article  Google Scholar 

  • Cherniak D (2010) Cation diffusion in feldspars. Rev Mineral Geochem 72:691–733

    Article  Google Scholar 

  • Chroneos A, Vovk RV (2015) Modeling self-diffusion in UO2 and ThO2 by connecting point defect parameters with bulk properties. Solid State Ion 274:1–3

    Article  Google Scholar 

  • Dologlou E (2011) Interrelation of the equation of state of MgO and self diffusion coefficients. J Appl Phys 110(3):036103

    Article  Google Scholar 

  • Foland KA (1974) Alkali diffusion in orthoclase. In: Hofmann AW, Gileui BJ, Yoder HS, Yund RA (eds) Geochemical transport and kinetics, vol 634. Carnegie Institution of Washington, Baltimore, pp 77–98

    Google Scholar 

  • Ganniari-Papageorgiou E, Fitzpatrick ME, Chroneos A (2015) Germanium diffusion in aluminium: connection between point defect parameters with bulk properties. J Mater Sci Mater Electron. doi:10.1007/s10854-015-3510-5

    Google Scholar 

  • Giletti BJ (1974) Diffusion related to geochronology. In: Hofmann AW, Gileui BJ, Yoder HS, Yund RA (eds) Geochemical transport and kinetics, vol 634. Carnegie Institution of Washington, Baltimore, pp 61–76

    Google Scholar 

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20

    Article  Google Scholar 

  • Hovis GL, Medford A, Conlon M, Tether A, Romanoski A (2010) Principles of thermal expansion in the feldspar system. Am Mineral 95:1060–1068

    Article  Google Scholar 

  • Hu H, Li H, Dai L, Shan S, Zhu C (2011) Electrical conductivity of albite at high temperatures and high pressures. Am Mineral 96:1821–1827

    Article  Google Scholar 

  • Hu H, Li H, Dai L, Shan S, Zhu C (2013) Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys Chem Mineral 40:51–62

    Article  Google Scholar 

  • Hu H, Dai L, Li H, Jiang JJ, Hui KS (2014) Electrical conductivity of K-feldspar at high temperature and high pressure. Mineral Petrol 108:609–618

    Article  Google Scholar 

  • Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Mineral Geochem 62:291–320

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2013) The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 °C: implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am Mineral 98:1779–1787

    Article  Google Scholar 

  • Jones A, Islam MS, Mortimer M, Palmer D (2004) Alkali ion migration in albite and K-feldspar. Phys Chem Mineral 31:313–320

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S (2013) Theory of isotope diffusion in a material with multiple species and its implications for hydrogen-enhanced electrical conductivity in olivine. Phys Earth Planet Inter 219:49–54

    Article  Google Scholar 

  • Kasper RB (1975) Cation and oxygen diffusion in albite. Ph.D. dissertation, Brown University, Providence, Rhode Island

  • Kronenberg AK, Yund RA, Rossman GR (1996) Stationary and mobile hydrogen defects in potassium feldspar. Geochim Cosmochim Acta 60:4075–4094

    Article  Google Scholar 

  • Lin TH, Yund RA (1972) Potassium and sodium self-diffusion in alkali feldspar. Contrib Mineral Petrol 34:177–184

    Article  Google Scholar 

  • Maury R (1968) Conductivilite electrique des tectosilicates. II. Discussion des resultats. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:355–366

    Google Scholar 

  • Ni H, Keppler H, Manthilake M, Katsura T (2011) Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contrib Mineral Petrol 162:501–513

    Article  Google Scholar 

  • Papathanassiou AN, Sakellis I (2010) Correlation of the scaling exponent γ of the diffusivity–density function in viscous liquids with their elastic properties. J Chem Phys 132(15):154503

    Article  Google Scholar 

  • Saltas V, Vallianatos F (2015) Thermodynamic calculations of self-and hetero-diffusion parameters in germanium. Mater Chem Phys 163:507–511

    Article  Google Scholar 

  • Shewmon PG (1963) Diffusion in solids. McGraw-Hill, New York

    Google Scholar 

  • Stewart DB, Von Limbach D (1967) Thermal expansion of low and high albite. Am Mineral 52:389–413

    Google Scholar 

  • Tribaudino M, Angel RJ, Cámara F, Nestola F, Pasqual D, Margiolaki I (2010) Thermal expansion of plagioclase feldspars. Contrib Mineral Petrol 160:899–908

    Article  Google Scholar 

  • Tribaudino M, Bruno M, Nestola F, Pasqual D, Angel RJ (2011) Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements. Am Mineral 96:992–1002

    Article  Google Scholar 

  • Tullis J (1983) Deformation of feldspars. In: Ribbe PH (ed) Feldspar mineralogy. vol 2. Mineralogical Society of America, United States, pp 297–323

    Google Scholar 

  • Vallianatos F, Saltas V (2014) Application of the cBΩ model to the calculation of diffusion parameters of He in olivine. Phys Chem Mineral 41:181–188

    Article  Google Scholar 

  • Varotsos PA (1977) On the temperature and pressure dependence of the defect formation volume in ionic crystals. J Phys Lett 38:L455–L458

    Article  Google Scholar 

  • Varotsos PA (2007a) Comparison of models that interconnect point defect parameters in solids with bulk properties. J Appl Phys 101(12):123503

    Article  Google Scholar 

  • Varotsos PA (2007b) Defect volumes and the equation of state in α-PbF2. Phys Rev B 76(9):092106

    Article  Google Scholar 

  • Varotsos PA (2007c) Calculation of point defect parameters in diamond. Phys Rev B 75(17):172107

    Article  Google Scholar 

  • Varotsos PA (2008) Point defect parameters in β-PbF2 revisited. Solid State Ion 179(11–12):438–441

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1977a) Calculation of the formation entropy of vacancies due to anharmonic effects. Phys Rev B 15:4111–4114

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1977b) The curvature in conductivity plots of alkali halides as a consequence of anharmonicity. J Phys Chem Solids 38:997–1001

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1980a) Calculation of diffusion coefficients at any temperature and pressure from a single measurement: I. Self-diffusion. Phys Rev B 22(6):3130–3134

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1980b) On the extraction of the vacancy formation parameters from specific heat data. Phys Status Solidi (a) 58:639–644

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1980c) On the question of the calculation of migration volumes in ionic crystals. Philos Mag A 42:13–18

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1980d) Determination of the compressibility of an alloy from its density. Phys Status Solidi (b) 102:K67–K72

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1982) Current methods of lattice defect analysis using dilatometry and self-diffusion. Phys Status Solidi (b) 110:9–31

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD (1986) Thermodynamics of point defects and their relation with bulk properties. North Holland, Amsterdam

    Google Scholar 

  • Varotsos PA, Ludwig W, Alexopoulos KD (1978) Calculation of the formation volume of vacancies in solids. Phys Rev B 18(6):2683–2691

    Article  Google Scholar 

  • Varotsos PA, Alexopoulos KD, Varotsos C, Lazridou M (1985) Interconnection of point defect parameters in BaF2. Phys Status Solidi (a) 88:K137–K140

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 63:33–48

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Zhang BH (2012) Diffusion of hydrogen in (Mg, Fe)2SiO4 and high pressure polymorphs refined by the cBΩ model. J Asian Earth Sci 54–55:9–17

    Article  Google Scholar 

  • Zhang BH (2014) Calculation of self-diffusion coefficients in iron. AIP Adv 4(1):017128

    Article  Google Scholar 

  • Zhang BH, Shan SM (2015a) Application of the cBΩ model to the calculation of diffusion parameters of Si in silicates. Geochem Geophys Geosyst 16:705–718

    Article  Google Scholar 

  • Zhang BH, Shan SM (2015b) Thermodynamic calculations of Fe–Mg interdiffusion in (Mg, Fe)2SiO4 polymorphs and perovskite. J Appl Phys 117(5):054906

    Article  Google Scholar 

  • Zhang BH, Wu XP (2012) Calculation of self-diffusion coefficients in diamond. Appl Phys Lett 100(5):051901

    Article  Google Scholar 

  • Zhang BH, Wu XP (2013) Diffusion of aluminum in MgO: a thermodynamic approach. Chin Phys B 22(5):056601

    Article  Google Scholar 

  • Zhang BH, Wu XP, Xu JS, Zhou RL (2010) Application of the cBΩ model for the calculation of oxygen self-diffusion coefficients in minerals. J Appl Phys 108(5):053505

    Article  Google Scholar 

  • Zhang BH, Wu XP, Zhou RL (2011) Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law. Solid State Ion 186(1):20–28

    Article  Google Scholar 

  • Zhang BH, Yoshino T, Wu XP, Matsuzaki T, Shan SM, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357–358:11–20

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for their constructive comments. This study was supported by the 1000 Plan Program for Young Talents, Hundred Talent Program of CAS and NSF of China (41303048) to BZ, and NSF of China (41472048) to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Shan, S. & Wu, X. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties. Phys Chem Minerals 43, 151–159 (2016). https://doi.org/10.1007/s00269-015-0782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0782-5

Keywords

Navigation