Skip to main content
Log in

Crystal chemistry of birefringent hydrogrossular

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group \( Ia\overline{3} d, \) and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca2.997Mg0.003)Σ3{Al1.794Fe 3+0.196 Cr 3+0.004 Mn 3+0.003 Ti 4+0.002 }Σ2[(SiO4)2.851(O4H4)0.151]Σ3 and (2) (Ca2.993Mg0.007)Σ3{Al1.977Fe 3+0.020 Mn 3+0.003 Cr 3+0.001 }Σ2[(SiO4)2.272(O4H4)0.730]Σ3. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ2 and overall R (F 2) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1), a = 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a = 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a = 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a = 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X3Y2Z3O12, for garnet. Phase 1a is near end-member grossular, ideally Ca3Al2Si3O12. The deficiencies of the site occupancy factors (sofs) for the Si (=Z) site indicate that there are significant [O4H4]4− replacing [SiO4]4−. The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement sofs. Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) The hydrous component in garnets: pyralspites. Am Mineral 69:1116–1126

    Google Scholar 

  • Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 66:403–409

    Google Scholar 

  • Akizuki M (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am Mineral 74:859–864

    Google Scholar 

  • Akizuki M, Hampar MS, Zussman J (1979) An explanation of anomalous optical properties of topaz. Mineral Mag 43:237–241

    Google Scholar 

  • Akizuki M, Takéuchi Y, Terada T, Kudoh Y (1998) Sectoral texture of a cubo-dodecahedral garnet in grandite. Neues Jahrbuch für Mineralogie, Monatshefte 12:565–576

    Google Scholar 

  • Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73:568–584

    Google Scholar 

  • Amthauer G, Rossman GR (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Angel R, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1,800 ℃. Am Mineral 74:509–512

    Google Scholar 

  • Antao SM (2013a) Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications. Phys Chem Miner 40:705–716

    Google Scholar 

  • Antao SM (2013b) The mystery of birefringent garnet: is the symmetry lower than cubic? Powder Diffr 28:281–288

    Google Scholar 

  • Antao SM (2013c) Can birefringent near-endmember grossular be non-cubic? New evidence from synchrotron diffraction. Can Mineral 51:771–784

    Google Scholar 

  • Antao SM (2014a) Nanodomains and anisotropy in cubic garnets, Denver X-ray conference

  • Antao SM (2014b) Crystal structure of morimotoite from Ice River, Canada. Powder Diffr 29:325–330

    Google Scholar 

  • Antao SM, Klincker AM (2013) Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys Chem Miner 40:575–586

    Google Scholar 

  • Antao SM, Klincker AM (2014) Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada. Powder Diffr 29:20–27

    Google Scholar 

  • Antao SM, Round SA (2014) Crystal chemistry of birefringent spessartine. Powder Diffr 29:233–240

    Google Scholar 

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

    Google Scholar 

  • Antao SM, Klincker AM, Round SA (2013a) Some garnets are cubic and birefringent, why? Am Crystallogr Assoc. Conference

  • Antao SM, Klincker AM, Round SA (2013b) Origin of birefringence in common silicate garnet: intergrowth of different cubic phases. Am Geophys Union. Conference

  • Antao SM, Zaman M, Klincker AM, Round SA, Gontijo VL, Camargo ES (2014) Garnet: Intergrowths, multi-phases, and optical anisotropy. Geol Soc of Am. Conference

  • Antao SM, Zaman M, Gontijo VL, Camargo ES, Marr RA (2015) Optical anisotropy, zoning, and coexistence of two cubic phases in andradites from Quebec and New York. Contrib Miner Petrol. doi:10.1007/s00410-015-1104-0

    Google Scholar 

  • Arlt T, Armbruster T, Miletich R, Ulmer P, Peters T (1998) High pressure single-crystal synthesis, structure and compressibility of the garnet Mn2+3Mn3+2[SiO4]3. Phys Chem Miner 26:100–106

    Google Scholar 

  • Armbruster T (1995) Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa. Eur J Mineral 7:1221–1225

    Google Scholar 

  • Armbruster T, Lager GA (1989) Oxygen disorder and the hydrogen position in garnet-hydrogarnet solid-solutions. Eur J Mineral 1:363–369

    Google Scholar 

  • Armbruster T, Geiger CA, Lager GA (1992) Single crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293 K. Am Mineral 77:518–527

    Google Scholar 

  • Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921

    Google Scholar 

  • Armbruster T, Kohler T, Libowitzky E, Friedrich A, Miletich R, Kunz M, Medenbach O, Gutzmer J (2001) Structure, compressibility, hydrogen bonding, and dehydration of the tetragonal Mn3+ hydrogarnet, henritermierite. Am Mineral 86:147–158

    Google Scholar 

  • Aubry A, Dusausoy Y, Laffaille A, Protas J (1969) Détermination et étude de la structure crystalline de l’henritermiérite, hydrogrenat de symétrie quadratique. 92:126–133

  • Babuska V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid solution series. Phys Earth Planet Inter 16:157–176

    Google Scholar 

  • Badar MA, Akizuki M, Hussain S (2010) Optical anomaly in iridescent andradite from the Sierra Madre mountains, Sonora, Mexico. Can Mineral 48:1195–1203

    Google Scholar 

  • Badar MA, Niaz S, Hussain S, Akizuki M (2013) Lamellar texture and optical anomaly in andradite from the Kamaishi mine, Japan. Eur J Mineral 25:53–60

    Google Scholar 

  • Bank H (1982) Über grossular und hydrogrossular. Zeitschrift der Deutschen Gemmologischen Gesellschaft 31:93–96

    Google Scholar 

  • Bartl H (1969) Röntgen-Einkristalluntersuchungen an 3CaO.Al2O3.6H2O und an 12CaO.7Al2O3.H2O; neuer Vorschlag zur 12CaO.7Al2O3–Struktur. Neues Jahrbuch Fur Mineralogie-Monatshefte, pp 404–413

  • Basso R, Cabella R (1990) Crystal chemical studies of garnets from metarodingites in teh Voltri Group metaophilites (Lingurian Alps, Italy). Neues Jahrbuch für Mineralogie Monatshefte, pp 127–136

  • Basso R, Dellagiusta A, Zefiro L (1981) A crystal chemical study of a Ti-containing hydrogarnet. Neues Jahrbuch Fur Mineralogie-Monatshefte 5:230–236

    Google Scholar 

  • Basso R, Dellagiusta A, Zefiro L (1983) Crystal-structure refinement of plazolite: a highly hydrated hatural hydrogrossular. Neues Jahrbuch Fur Mineralogie-Monatshefte 6:251–258

    Google Scholar 

  • Basso R, Cimmino F, Messiga B (1984a) Crystal chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri Massif (Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 148:246–258

    Google Scholar 

  • Basso R, Cimmino F, Messiga B (1984b) Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 150:247–258

    Google Scholar 

  • Baur WH, Fischer RX (2003) On the significance of small deviations from higher symmetry. Mineral Mag 67:793–797

    Google Scholar 

  • Birkett TC, Trzcienski WE (1984) Hydrogarnet: multi-site hydrogen occupancy in the garnet structure. Can Mineral 22:675–680

    Google Scholar 

  • Boiocchi M, Bellatreccia F, Della Ventura GD, Oberti R (2012) On the symmetry and atomic ordering in (OH, F)-rich spessartine: towards a new hydrogarnet end-member. Z Kristallogr 227:385–395

    Google Scholar 

  • Brauns R (1891) Die optischen Anomalien der Kristalle. Preisschr. Jablonowski Ges., Leipzig, Germany

  • Brewster D (1853) On the optical figures produced by the disintegrated surfaces of crystals. Philos Mag Ser 4(6):16–30

    Google Scholar 

  • Brown D, Mason RA (1994) An occurrence of sectored birefringence in almandine from the Gangon terrane, Labrador. Can Mineral 32:105–110

    Google Scholar 

  • Cagliotti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3:223–228

    Google Scholar 

  • Ceccarelli C, Jeffrey GA, Taylor R (1981) A survey of O–H···O hydrogen bond geometries determined by neutron diffraction. J Mol Struct 70:255–271

    Google Scholar 

  • Chakhmouradian AR, Cooper MA, Medici L, Hawthorne FC, Adar F (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization. Can Mineral 46:1033–1042

    Google Scholar 

  • Cho H, Rossman GR (1993) Single-crystal NMR studies of low-concentration hydrous species in minerals: grossular garnet. Am J Sci 78:1149–1164

    Google Scholar 

  • Cohen-Addad C, Ducros P, Durif-Varambona A, Bertaut EF, Delapalme A (1963) Etude de la position des atoms d’hydrogene dans l’hydrogrenat Al2O3(CaO)3(H2O)6 par résonance magnétique nucléaire et diffraction neutronique. Solid State Commun 1:85–87

    Google Scholar 

  • Cohen-Addad C, Ducros P, Durif-Varambona A, Bertaut EF, Delapalme A (1964) Détermination de la position des atoms d’hydrogene dans l’hydrogrenat Al2O3(CaO)3(H2O)6 par résonance magnétique nucléaire et diffraction neutronique. J Phys Fr 25:478–483

    Google Scholar 

  • Cohen-Addad C, Ducros P, Bertaut EF (1967) Étude de la substitution du groupement SiO4 par (OH)4 dans les composés Al2Ca3(OH)12 et Al2Ca3(SiO4)2.16(OH)3.36 de type grenat. Acta Crystallogr A 23:220–230

    Google Scholar 

  • Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20:5167–5173

    Google Scholar 

  • Dowty E (1971) Crystal chemistry of titanium and zirconium garnet. I. Review and spectral properties. Am Mineral 56:1983–2009

    Google Scholar 

  • Ferro O, Galli E, Papp G, Quartieri S, Szakall S, Vezzalini G (2003) A new occurrence of katoite and re-examination of the hydrogrossular group. Eur J Mineral 15:419–426

    Google Scholar 

  • Foreman DW Jr (1968) Neutron and X-ray diffraction study of Ca3Al2(O4D4)3, a garnetoid. J Chem Phys 48:3037–3041

    Google Scholar 

  • Frankel JJ (1959) Uvarovite garnet and South African jade (hydrogrossular) from the Bushveld Complex, Transvaal. Am Mineral 41:565–591

    Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya LV, Shtukenberg AG, Bannova II, Skalkina YA (2007) Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct Chem 18:493–503

    Google Scholar 

  • Fujino K, Momoi H, Sawamoto H, Kumazawa M (1986) Crystal structure and chemistry of MnSiO3 tetragonal garnet. Am Mineral 71:781–785

    Google Scholar 

  • Ganguly J, Cheng W, O’Neill HSC (1993) Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties. Am Mineral 78:583–593

    Google Scholar 

  • Geiger CA (2013) Static disorders of atoms and experimental determination of Debye temperature in pyrope: low- and high-temperature single-crystal X-ray diffraction study–discussion. Am Mineral 98:780–782

    Google Scholar 

  • Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) Nomenclature of the garnet supergroup. Am Mineral 98:785–811

    Google Scholar 

  • Griffen DT, Hatch DM, Phillips WR, Kulaksiz S (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Am Mineral 77:399–406

    Google Scholar 

  • Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12): pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24:206–221

    Google Scholar 

  • Hickmott DD, Shimizu N, Spear FS, Selverstone J (1987) Trace-element zoning in a metamorphic garnet. Geology 15:573–576

    Google Scholar 

  • Hirai H, Nakazawa H (1986) Visualizing low symmetry of a grandite garnet on precession photographs. Am Mineral 71:1210–1213

    Google Scholar 

  • Hofmeister AM, Schaal RB, Campbell KR, Berry SL, Fagan TJ (1998) Prevalence and origin of birefringence in 48 garnets from the pyrope-almandine- grossularite-spessartine quaternary. Am Mineral 83:1293–1301

    Google Scholar 

  • Huggins FE (1977) Titanium-silicate garnets. II. The crystal chemistry of melanites and schorlomites. Am Mineral 62:646–665

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977) Titanium-containing silicate garnets. I. The distribution of AI, Fe3+, and Ti4+ between octahedral and tetrahedral sites. Am Mineral 62:475–490

    Google Scholar 

  • Hutton CO (1943) Hydrogrossular, a new mineral of the garnet hydrogarnet series. Trans R Soc N Z 73:174–180

    Google Scholar 

  • Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: nonlinear dynamics in regions of immiscibility. Am Mineral 76:1319–1327

    Google Scholar 

  • Kahr B, McBride JM (1992) Optically anomalous crystals. Angew Chem Int Ed 31:1–26

    Google Scholar 

  • Kalinichenko AM, Proshko VY, Matyash IC, Pavlishin VI, Gamarnik MY (1987) NMR data on crystallographic features of hydrogrossular. Geochem Int 24:132–135

    Google Scholar 

  • Kingma KJ, Downs JW (1989) Crystal-structure analysis of a birefringent andradite. Am Mineral 74:1307–1316

    Google Scholar 

  • Kitamura K, Komatsu H (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al, Fe)5O12. Kristallographie und Technik 13:811–816

    Google Scholar 

  • Kobayashi S, Shoji T (1987) Infrared spectra and cell dimensions of hydrothermally synthesized grandite-hydrograndite series. Miner J 13:490–499

    Google Scholar 

  • Koritnig S, Rösch H, Schneider A, Seifert F (1978) Der Titan-zirkon-granat aus den Kalksilikatfels-Einschlüssen des Gabbro im Radautal, Harz, Bundesrepublik Deutschland. Tschermaks Mineral Petrogr Mitt 25:305–313

    Google Scholar 

  • Lacivita V, D’Arco R, Orlando R, Dovesi R, Meyer A (2013) Anomalous birefringence in andradite-grossular solid solutions: a quantum-mechanical approach. Phys Chem Miner 40:781–788

    Google Scholar 

  • Lager GA, Von Dreele RB (1996) Neutron powder diffraction study of hydrogarnet to 9.0 GPa. Am Mineral 81:1097–1104

    Google Scholar 

  • Lager GA, Rossman GR, Rotella FJ, Schultz AJ (1987a) Neutron-diffraction structure of a low-water grossular at 20 K. Am Mineral 72:766–768

    Google Scholar 

  • Lager GA, Armbruster T, Faber J (1987b) Neutron and X-ray-diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Mineral 72:756–765

    Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86–748

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432

    Google Scholar 

  • Leger JM, Redon AM, Chateau C (1990) Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys Chem Miner 17:161–167

    Google Scholar 

  • Libowitzky E (1991) Donathite: an intergrowth of magnetite and chromite, causing form birefringence. Neues Jahrbuch für Mineralogie Monatshefte 10:449–456

    Google Scholar 

  • Libowitzky E (1994a) Optical anisotropy of zoned magnetites due to form birefringence. Mineral Petrol 52:107–111

    Google Scholar 

  • Libowitzky E (1994b) Optical anisotropy in the spinel group: a polishing effect. Eur J Mineral 6:187–194

    Google Scholar 

  • Libowitzky E (1994c) Optical anisotropy of cuprite caused by polishing. Can Mineral 32:353–358

    Google Scholar 

  • Libowitzky E (1994d) Anisotropic pyrite: a polishing effect. Phys Chem Miner 21:97–103

    Google Scholar 

  • Libowitzky E (2001) The pseudo-biabsorption of trigonal rock-forming carbonates. neues Jahrbuch für Mineralogie. Monatshefte 2001:67–79

    Google Scholar 

  • Mallard E (1876) Anomalies optiques. Ann Mines Mem VII Ser 10:60

    Google Scholar 

  • Manning PG, Owens DR (1977) Electron microprobe, X-ray diffraction, and spectral studies of South African and British Columbian “jades”. Can Miner 15:512–517

    Google Scholar 

  • Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr B 51:929–939

    Google Scholar 

  • Miletich R, Armbruster T, Heinemann S, Angel RJ (1997) Tetragonal garnets and Jahn-Teller effect: influence of pressure and temperature on the cooperative distortion. Eos Trans 78 Supp: F754

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ito E (1999a) Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am Mineral 84:199–202

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999b) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am Mineral 84:1135–1143

    Google Scholar 

  • Nakatsuka A, Chaya H, Yoshiasa A (2005) Crystal structure of single-crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1000 & #xB0;C. Am Mineral 90:755–757

    Google Scholar 

  • Nakatsuka A, Shimokawa M, Nakayama N, Ohtaka O, Arima H, Okube M, Yoshiasa A (2011) Static disorders of atoms and experimental determination of Debye temperature in pyrope: low- and high-temperature single-crystal X-ray diffraction study. Am Mineral 96:1593–1605

    Google Scholar 

  • Nakatsuka A, Shimokawa M, Nakayama N, Ohtaka O, Arima H, Okube M, Yoshiasa A (2013) Static disorders of atoms and experimental determination of Debye temperature in pyrope: low- and high-temperature single-crystal X-ray diffraction study–reply. Am Mineral 98:783–784

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:1769–1780

    Google Scholar 

  • Parise JB, Wang Y, Gwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) join. Geophys Res Lett 23:3799–3802

    Google Scholar 

  • Passaglia E, Rinaldi R (1984) Katoite, a new member of the Ca3Al2(SiO4)3–Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bull Minéral 10:605–618

    Google Scholar 

  • Peterson RC, Locock AJ, Luth RW (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite. Can Mineral 33:627–631

    Google Scholar 

  • Prewitt CT, Sleight AW (1969) Garnet-like structures of high-pressure cadmium germanate and calcium germanate. Science 163:386–387

    Google Scholar 

  • Reeder RJ, Markgraf SA (1986) High-temperature crystal chemistry of dolomite. Am Miner 71:795–804

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Google Scholar 

  • Rinaldi R, Passaglia E (1989) Hibschite topotype: crystal chemical characterization. Eur J Mineral 1:639–644

    Google Scholar 

  • Rossman GR, Aines RD (1986) Spectroscopy of a birefringent grossular from Asbestos, Quebec, Canada. Am Mineral 71:779–780

    Google Scholar 

  • Rossman GR, Aines RD (1991) The hydrous components in garnets: grossular-hydrogrossular. Am Mineral 76:1153–1164

    Google Scholar 

  • Sacerdoti M, Passaglia E (1985) The crystal structure of katoite and implications within the hydrogrossular group of minerals. Bull Mineral 108:1–8

    Google Scholar 

  • Schwartz K, Nolet DA, Bums RG (1980) Mössbauer spectroscopy and crystal chemistry of natural Fe- Ti garnets. Am Mineral 65:142–153

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    Google Scholar 

  • Shtukenberg AG, Punin YO, Frank-Kamenetskaya OV, Kovalev OG, Sokolov PB (2001) On the origin of anomalous birefringence in grandite garnets. Mineral Mag 65:445–459

    Google Scholar 

  • Shtukenberg AG, Popov DY, Punin YO (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineral Mag 69:537–550

    Google Scholar 

  • Smyth JR, Madel RE, McCormick TC, Munoz JL, Rossman GR (1990) Crystal-structure refinement of a F-bearing spessartine garnet. Am Mineral 75:314–318

    Google Scholar 

  • Takéuchi Y, Haga N, Umizu S, Sato G (1982) The derivative structure of silicate garnets in grandite. Z Kristallogr 158:53–99

    Google Scholar 

  • Tanaka T, Kimura R, Akizuki M, Kudoh Y (2002) Origin of low-symmetry growth vectors in edingtonite and yugawaralite, and crystal structure of the k{011} and v{120} sectors of yugawaralite. Mineral Mag 66:409–420

    Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from alumina. J Appl Crystallogr 20:79–83

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105

    Google Scholar 

  • Waychunas GA (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effect of Ti bonding distances, Ti valence, and site geometry on absorption edge structure. Am Mineral 72:89–101

    Google Scholar 

  • Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: part II. Single-crystal X-ray structures. Am Mineral 86:1231–1251

    Google Scholar 

  • Wills AS, Brown ID (1999) VaList. CEA France. This is a freely available computer program

  • Zabinski W (1966) Hydrogarnets. Polska Akademia Nauk, Oddzial Krakowie, Komisja Nauk Mineralogicznych. Prace Mineralogiczne 3:1–69

    Google Scholar 

Download references

Acknowledgments

George R. Rossman, the anonymous reviewers, and the editor, Taku Tsuchiya, are thanked for many useful comments that helped improve this manuscript. K. Tait is thanked for providing the samples from the Royal Ontario Museum (ROM). R. Marr is thanked for help with the EMPA data collection. The HRPXRD data were collected at the X-ray Operations and Research beamline 11-BM, Advanced Photon Source (APS), Argonne National Laboratory (ANL). Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported with a NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antao, S.M. Crystal chemistry of birefringent hydrogrossular. Phys Chem Minerals 42, 455–474 (2015). https://doi.org/10.1007/s00269-015-0736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0736-y

Keywords

Navigation