Skip to main content

Advertisement

Log in

The influence of ferric iron and hydrogen on Fe–Mg interdiffusion in ferropericlase ((Mg,Fe)O) in the lower mantle

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Both ferric iron (Fe3+) and hydrogen (H+) have important influence on several transport properties of minerals such as diffusion. We determined the influence of Fe3+ and H+ on Fe–Mg interdiffusion in (Mg,Fe)O at 1,673–1,873 K and 5–24 GPa under the anhydrous and hydrous conditions using the diffusion couple technique. The diffusion couples consist of single crystals of ferropericlase ((Mg,Fe)O) and periclase (MgO) with Mg/(Mg + Fe) ratios ranging from 0.44 to 1.0. The oxygen fugacity was controlled by the following assemblages of metal and oxide: Fe–FeO, Ni–NiO, Mo–MoO2, and Re–ReO2. After the diffusion experiments, hydrogen (H+) concentrations were measured using the FTIR spectroscopy. Fe3+ concentrations were measured using the flank method. Under the conditions investigated, Fe–Mg interdiffusivity increases strongly with Fe3+ and modestly with H+ and the influence of H+ relative to that of Fe3+ on Fe–Mg interdiffusion decreases with temperature. Our results show that, under both anhydrous and hydrous conditions, the dominant defect responsible for diffusion is the same suggesting that H+ enhances Fe–Mg interdiffusivity by enhancing the mobility of vacancies at the M-site. Our results indicate that the influence of Fe3+ likely dominates at temperatures expected for the normal lower mantle conditions (T > 1,900 K), while the influence of both Fe3+ and H+ is important at lower temperature environments such as near the subduction zone. We also estimated the vacancy diffusivity based on Fe–Mg interdiffusion and vacancy concentration estimated from the charge neutrality condition with Fe3+. Both Fe–Mg interdiffusivity and vacancy diffusivities are reasonably consistent with values estimated from previous experimental and theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammann MW, Brodhlot JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D” layer. Nature 465:462–465

    Article  Google Scholar 

  • Ammann MW, Brodhlot JP, Dobson DP (2011) Ferrous iron diffusion in ferro-periclase across the spin transition. Earth Planet Sci Lett 302:393–402

    Article  Google Scholar 

  • Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al, Fe)–MgSiO3 perovskite. Earth Planet Sci Lett 193:501–508

    Article  Google Scholar 

  • Blank SL, Pask JA (1969) Diffusion of iron and nickel in magnesium oxide single crystals. J Am Ceram Soc 54:669–675

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221

    Article  Google Scholar 

  • Bolfan-Casanova N, Mackwell SJ, Keppler H, McCammon C, Rubie DC (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: implications for the storage of water in the Earth’s lower mantle. Geophys Res Lett 29:89-81–89-84

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie DC (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett 30:1905. doi:10.1029/2003GL017182

    Article  Google Scholar 

  • Bolfan-Casanova N, McCammon CA, Mackwell SJ (2006) Water in transition zone and lower mantle minerals. In: Jacobsen SD, Lee Svd (eds) Earth’s deep water cycle, Washington DC, pp 57–68

  • de Koker N, Stixrude L (2010) Theoretical computation of diffusion in minerals and melts. Rev Miner Geochem 72:971–996

    Article  Google Scholar 

  • Demouchy S, Mackwell SJ, Kohlstedt DL (2007) Influence of hydrogen on Fe–Mg interdiffusion in (Mg, Fe)O and implications for Earth’s lower mantle. Contrib Miner Petrol 154:279–289

    Article  Google Scholar 

  • Dobson DP, Brodholt JP (2000) The electrical conductivity of the lower mantle phase magnesiowüstite at high temperatures and pressures. J Geophys Res 105:531–538

    Article  Google Scholar 

  • Dobson DP, Richmond NC, Brodholt JP (1997) A high-temperature electrical conduction mechanism in the lower mantle phase. Science 275:1779–1781

    Article  Google Scholar 

  • Frost DJ (2003) Fe2+–Mg partitioning between garnet, magnesiowüstite, and (Mg, Fe)2SiO4 phases of the transition zone. Am Miner 88:387–397

    Google Scholar 

  • Frost DJ, McCammon C (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gonzalez R, Chen Y, Tsang KL (1982) Diffusion of deuterium and hydrogen in doped and undoped MgO crystals. Phys Rev B26:4637–4645

    Article  Google Scholar 

  • Gordon RS (1985) Diffusional creep phenomena in polycrystalline oxides. In: Schock RN (ed) Point defects in minerals. American Geophysical Union, Washington, pp 132–140

    Chapter  Google Scholar 

  • Holzapfel C, Rubie DC, Mackwell SJ, Frost DJ (2003) Effect of pressure on Fe–Mg interdiffusion in (FexMg1−x)O, ferropericlase. Phys Earth Planet Inter 139:21–34

    Article  Google Scholar 

  • Ita J, Cohen RE (1997) Effects of pressure on diffusion and vacancy formation in MgO from nonempirical free-energy integration. Phys Rev Lett 79:3198–3201

    Article  Google Scholar 

  • Ito Y, Toriumi M (2007) Pressure effect on self-diffusion in periclase (MgO) by molecular dynamics. J Geophys Res 112:B04206. doi:10.1029/2005JB003685

    Google Scholar 

  • Jackson SL (1989) Extension of Wohl’s ternary asymmetric solution model to four and n components. Am Miner 74:14–17

    Google Scholar 

  • Karato S (1981) Rheology of the lower mantle. Physics of Earth and Planetary Interiors 24:1–14

    Article  Google Scholar 

  • Kessel R, Beckett JR, Stolper EM (2001) Thermodynamic properties of the Pt–Fe system. Am Miner 86:1003–1014

    Google Scholar 

  • Kohlstedt DL, Mackwell SJ (2008) The role of protons in ionic diffusion in (Mg,Fe)O and (Mg,Fe)2SiO4. J Mater Sci 43:4693–4700

    Article  Google Scholar 

  • Lawrence JF, Wysession ME (2006) Seismic evidence for subduction-transported water in the lower mantle. In: Svd Lee (ed) Jacobsen SD. Earth’s deep water cycle. American Geophysical Union, Washington DC, pp 251–261

    Google Scholar 

  • Mackwell SJ, Bystricky M, Sproni M (2005) Fe–Mg interdiffusion in (Mg,Fe)O. Phys Chem Miner. doi:10.1007/s00269-00005-00013-00266

    Google Scholar 

  • McCammon C, Peyronneau J, Poirier J-P (1998) Low ferric iron content of (Mg, Fe)O at high pressures and temperatures. Geophys Res Lett 25:1589–1592

    Article  Google Scholar 

  • McCammon C, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Inter 143(144):157–169

    Article  Google Scholar 

  • Murakami M, Hirose K, Yurimoto H, Nakashima S, Takafuji N (2002) Water in Earth’s lower mantle. Science 295:1885–1887

    Article  Google Scholar 

  • Nishihara Y, Shinmei T, Karato S (2008) Effects of chemical environments on the hydrogen-defects in wadsleyite. Am Mineral 93:831–843

    Article  Google Scholar 

  • Otsuka K, Karato S (2011) Control of the water fugacity at high pressures and temperatures: applications to the incorporation mechanisms of water in olivine. Phys Earth Planet Inter 189:27–33

    Article  Google Scholar 

  • Otsuka K, McCammon C, Karato S (2010) Tetrahedral occupancy of ferric iron in (Mg,Fe)O: implications for point defects in the Earth’s lower mantle. Phys Earth Planet Inter 180:179–188

    Article  Google Scholar 

  • Otsuka K, Longo M, McCammon CA, Karato S (2013) Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: implications for redox conditions during diamond formation in the lower mantle. Earth Planet Sci Lett 365:7–16

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bull Miner 105:20–29

    Google Scholar 

  • Rigby EB, Cutler IB (1965) Interdiffusion studies of the system FexO–MgO. J Am Ceram Soc 48:95–99

    Article  Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10−5 pascals) pressure and at higher temperatures. In: Bulletine USGS (ed), vol. U.S. Government Printing Office, p 456 pp

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s mantle resulting from carbon-iron redox coupling. Nature 472:209–214

    Article  Google Scholar 

  • Rubie DC, Karato S, Yan H, O’Neill HSC (1993) Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Phys Chem Miner 20:315–322

    Article  Google Scholar 

  • Seifert S, O’Neill HSC (1987) Experimental determination of activity-composition relationship in Ni2SiO4–Mg2SiO4 and Co2SiO4–Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa. Geochemica et Cosmochemica Acta 51:97–104

    Article  Google Scholar 

  • Sempolinski DR, Kingery WD (1980) Ionic conductivity and magnesium vacancy mobility in magnesium oxide. J Am Ceram Soc 63:664–669

    Article  Google Scholar 

  • Swartzendruber LJ, Itkin VP, Alcock CB (1991) The Fe–Ni (iron–Nickel) system. Phase Equilib 12:288–312

    Article  Google Scholar 

  • Van Orman JA, Crispin KL (2010) Diffusion in oxides. Rev Miner Geochem 72:757–825

    Article  Google Scholar 

  • Van Orman JA, Fei Y, Hauri EH, Wang J (2003) Diffusion in MgO at high pressure: constraints on deformation mechanisms and chemical transport at the core-mantle boundary. Geophys Res Lett 30:1056. doi:10.1029/2002GL016343

    Article  Google Scholar 

  • Walker RA, Darby JB (1970) Thermodynamic properties of solid nickel-platinum alloys. Acta Metall 18:1261–1266

    Article  Google Scholar 

  • Wood BJ, Nell J (1991) High-temperature electrical conductivity of the lower-mantle phase (Mg,Fe)O. Nature 351:309–311

    Article  Google Scholar 

  • Xu Y, McCammon C (2002) Evidence for ionic conductivity in lower mantle (Mg,Fe)(Si,Al)O3 perovskite. J Geophys Res 107:2251. doi:10.1029/2001JB000677

    Article  Google Scholar 

  • Yamazaki D, Irifune T (2003) Fe–Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth Planet Sci Lett 216:301–311

    Article  Google Scholar 

  • Yamazaki D, Karato S (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineral 86:385–391

    Google Scholar 

  • Yamazaki D, Yoshino T, Matsuzaki T, Katsura T, Yoneda A (2009) Texture of (Mg, Fe)SiO3 perovskite and ferro-periclase aggregate: implications for rheology of the lower mantle. Phys Earth Planet Inter 174:138–144

    Article  Google Scholar 

  • Yoshino T, Yamazaki D, Ito E, Katsura T (2008) No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys Res Lett 35:L22303. doi:10.1029/2008GL035932

    Article  Google Scholar 

  • Zhao Y-H, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Miner Petrol 147:155–161

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation under Grant No. EAR-0809330. We are grateful to James Eckert for his assistance with electron microprobe analysis and George Amulele and Zhixue Du for their assistance with multianvil experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Karato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuka, K., Karato, Si. The influence of ferric iron and hydrogen on Fe–Mg interdiffusion in ferropericlase ((Mg,Fe)O) in the lower mantle. Phys Chem Minerals 42, 261–273 (2015). https://doi.org/10.1007/s00269-014-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0717-6

Keywords

Navigation