Skip to main content
Log in

Volume thermal expansion along the jadeite–diopside join

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

An in situ single-crystal high-temperature X-ray diffraction study was performed on clinopyroxene crystals along the jadeite, (NaAlSi2O6 Jd)–diopside (CaMgSi2O6 Di) join. In particular, natural samples of jadeite, diopside, P2/n omphacite and three C2/c synthetic samples with intermediate composition (i.e., Jd80, Jd60, Jd40) were investigated. In order to determine the unit-cell volume thermal expansion coefficient (α V), the unit-cell parameters for all these compositions have been measured up to c.a. 1,073 K. The evolution of the unit-cell volume thermal expansion coefficient (α V) along the Jd–Di join at different temperatures has been calculated by using a modified version of the equation proposed by Holland and Powell (J Metamorph Geol 16(3):309–343, 1998). The equation \( a_{{{\text{V}}\;(303{\text{K}},1{\text{bar}})}} = 2.68(3) \times 10^{ - 5} + [1.1\left( 1 \right) \times 10^{ - 8} \times X_{\text{Jd}} ] - [7.1\left( {1.7} \right) \times 10^{ - 10} \times X_{\text{Jd}}^{2} ] \) obtained from the α V at room-T (i.e., α V303K,1bar) allows us to predict the room-T volume thermal expansion for Fe-free C2/c clinopyroxenes with intermediate composition along the binary join Jd-Di. The observed α V value for P2/n omphacite α V(303K,1bar) = 2.58(5) × 10−5 K−1 was compared with that recalculated for disordered C2/c omphacite published by Pandolfo et al. (Phys Chem Miner 1–10, 2012) [α V(303K,1bar) = 2.4(5) × 10−5 K−1]. Despite the large e.s.d.’s for the latter, the difference of both values at room-T is small, indicating that convergent ordering has practically no influence on the room-T thermal expansion. However, at high-T, the smaller thermal expansion coefficient for the C2/c sample with respect to the P2/n one with identical composition could provide further evidence for its reduced stability relative to the ordered one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvaro M, Nestola F, Ballaran TB, Cámara F, Domeneghetti MC, Tazzoli V (2010) High-pressure phase transition of a natural pigeonite. Am Mineral 95(2–3):300–311. doi:10.2138/am.2010.3175

    Article  Google Scholar 

  • Alvaro M, Cámara F, Domeneghetti M, Nestola F, Tazzoli V (2011a) HT P21/cC2/c phase transition and kinetics of Fe2+–Mg order–disorder of an Fe-poor pigeonite: implications for the cooling history of ureilites. Contrib Mineral Petrol 162(3):599–613

    Article  Google Scholar 

  • Alvaro M, Nestola F, Cámara F, Domeneghetti MC, Tazzoli V (2011b) High-pressure displacive phase transition of a natural Mg-rich pigeonite. Phys Chem Minerals 38(5):379–385

    Article  Google Scholar 

  • Anderson OL, Isaak D, Oda H (1992) High-temperature elastic constant data on minerals relevant to geophysics. Rev Geophys 30(1):57–90

    Article  Google Scholar 

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29(2):445–522

    Article  Google Scholar 

  • Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Crystallogr Sect A 51(1):33–38

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372(6505):452–454

    Article  Google Scholar 

  • Boffa Ballaran T (2003) Line broadening and enthalpy: some empirical calibrations of solid solution behaviour from IR spectra. Phase Transit A Multinatl J 76(1–2):137–154

    Article  Google Scholar 

  • Boffa Ballaran T, Carpenter MA, Domeneghetti MC, Tazzoli V (1998) Structural mechanisms of solid solution and cation ordering in augite–jadeite pyroxenes. I. A macroscopic perspective. Am Mineral 83(5–6):419

    Google Scholar 

  • Cámara F, Carpenter MA, Domeneghetti MC, Tazzoli V (2003) Coupling between non-convergent ordering and transition temperature in the C2/c ⟷ P21/c phase transition in pigeonite. Am Mineral 88(7):1115–1128

    Google Scholar 

  • Cámara F, Gatta GD, Meven M, Pasqual D (2012) Thermal expansion and high temperature structure evolution of zoisite by single-crystal X-ray and neutron diffraction. Phys Chem Mineral 39(1):27–45

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Cannillo E, Germani G, and Mani F, (1983) Nuovo software cristallografico per il diffrattometro a cristallo singolo Philips PW1100 (New crystallographic software for Philips PW1100 single crystal diffractometer) Internal Report 2 C.N.R. Centro di Studio per la Cristallografia Strutturale

  • Carpenter MA (1979) Omphacites from Greece, Turkey, and Guatemala; composition limits of cation ordering. Am Mineral 64(1–2):102–108

    Google Scholar 

  • Carpenter MA (2002): Microscopic strain, macroscopic strain and the thermodynamics of phase transitions in minerals. In Gramaccioli CM (ed) Energy modelling in minerals. EMU Notes Mineral, 4. Eötvös University Press, Budapest, pp 311–346

  • Carpenter MA, Domeneghetti MC, Tazzoli V (1990) Application of Landau Theory to Cation Ordering in Omphacite .1. Equilibrium Behavior. Eur J Mineral 2 (1):7–18

  • Carpenter MA, Ballaran TB, Atkinson A (1999) Microscopic strain, local structural heterogeneity and the energetics of silicate solid solutions. Phase Transit A Multinatl J 69(1):95–109

    Article  Google Scholar 

  • Domeneghetti M, Fioretti A, Cámara F, McCammon C, Alvaro M (2013) Thermal history of nakhlites: a comparison between MIL 03346 and its terrestrial analogue Theo’s flow. Geoch Cosmoch Acta 121:571–581

  • Fei Y (1995) Thermal expansion. In: Mineral physics & crystallography: a handbook of physical constants. American Geophysical Union, pp. 29–44

  • Ferrari S, Nestola F, Massironi M, Maturilli A, Helbert J, Alvaro M, Domeneghetti MC, Zorzi F (2014) In-situ high-temperature emissivity spectra and thermal expansion of C2/c pyroxenes: implications for the surface of Mercury. Am Mineral 99(4):786–792

    Article  Google Scholar 

  • Finger LW, Ohashi Y (1976) The thermal expansion of diopside to 800 °C and a refinement of the crystal structure at 700 °C. Am Mineral 61:303–310

    Google Scholar 

  • Gatta GD, Comboni D, Alvaro M, Lotti P, Cámara F, Domeneghetti MC (2014) Thermoelastic behavior and dehydration process of cancrinite. Phys Chem Mineral 41(5):373–386

    Article  Google Scholar 

  • Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2–Al2O3–CaO–MgO–FeO–K2O–Na2O–H2O–CO2. Eur J Mineral 9(1):175–223

    Google Scholar 

  • Gottschalk M (2004) Thermodynamic properties of zoisite, clinozoisite and epidote. Rev Mineral Geochem 56:83–124

  • Hawthorne FC, Ungaretti L, Oberti R (1995) Site populations in minerals; terminology and presentation of results of crystal-structure refinement. Can Mineral 33(4):907–911

    Google Scholar 

  • Holland TB (1990) Activities of components in omphacitic solid solutions. Contrib Mineral Petrol 105(4):446–453

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29(3):333–383

    Article  Google Scholar 

  • Hunt SA, Walker AM, McCormack RJ, Dobson DP, Wills AS, Li L (2011) The effect of pressure on thermal diffusivity in pyroxenes. Mineral Mag 75(5):2597–2610

    Article  Google Scholar 

  • Knight KS (1996) A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 K and 290 K. Mineral Mag 60:9

    Article  Google Scholar 

  • Mantovani L, Tribaudino M, Mezzadri F, Calestani G, Bromiley G (2013) The structure of (Ca, Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca, M2+)M2+ Si2O6 pyroxenes (M2+ = Co, Fe, Mg). Am Mineral 98:241–1252

  • Nestola F, Ballaran TB, Liebske C, Thompson R, Downs RT (2008) The effect of the hedenbergitic substitution on the compressibility of jadeite. Am Mineral 93(7):1005–1013

    Article  Google Scholar 

  • Nishihara Y, Matsukage KN, Karato SI (2006) Effects of metal protection coils on thermocouple EMF in multi-anvil high-pressure experiments. Am Mineral 91(1):111–114

    Article  Google Scholar 

  • Pandolfo F, Nestola F, Cámara F, Domeneghetti MC (2012) New thermoelastic parameters of natural C2/c omphacite. Phys Chem Miner 39:295–304

  • Pavese A, Bocchio R, Ivaldi G (2000) In situ high temperature single crystal X-ray diffraction study of a natural omphacite. Mineral Mag 64(6):983–993

    Article  Google Scholar 

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behavior of hydrous minerals at high pressure and temperature: I Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore. Am Mineral 81(3):335–340

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Electron probe quantitation, pp 31–75

  • Redhammer GJ, Cámara F, Alvaro M, Nestola F, Tippelt G, Prinz S, Simons J, Roth G, Amthauer G (2010) Thermal expansion and high-temperature P2 1/cC2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si, Ge)2O6. Phys Chem Miner 37(10):685–704

  • Richet P, Mysen BO, Ingrin J (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys Chem Miner 25(6):401–414

    Article  Google Scholar 

  • Sheldrick GM (1996) Sadabs. University of Göttingen Germany

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  Google Scholar 

  • Tribaudino M (1996) High-temperature crystal chemistry of C2/c clinopyroxenes along the join CaMgSi2O6–CaAl2SiO6. Eur J Mineral 8(2):273–279

    Article  Google Scholar 

  • Tribaudino M, Mantovani L (2014) Thermal expansion in C2/c pyroxenes: a review and new high temperature structural data on a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47). Mineral Mag 78:311–324

  • Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high-temperature P21/cC2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): Structural and thermodynamic behavior. Am Mineral 87(5–6):648–657

  • Tribaudino M, Nestola F, Bruno M, Ballaran TB, Liebske C (2008) Thermal expansion along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 solid solutions. Phys Chem Miner 35(5):241–248

    Article  Google Scholar 

  • Tribaudino M, Angel RJ, Cámara F, Nestola F, Pasqual D, Margiolaki I (2010) Thermal expansion of plagioclase feldspars. Contrib Mineral Petrol 160:899–908

    Article  Google Scholar 

  • van Westrenen W, Wood B, Blundy J (2001) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib Mineral Petrol 142(2):219–234

    Article  Google Scholar 

  • van Westrenen W, Allan NL, Blundy JD, Lavrentiev MY, Lucas BR, Purton JA (2003) Trace element incorporation into pyrope–grossular solid solutions: an atomistic simulation study. Phys Chem Miner 30(4):217–229. doi:10.1007/s00269-003-0307-5

    Article  Google Scholar 

  • Wilson AJC (1995) International tables for crystallography. Volume C. Kluwer, Dordrecht

    Google Scholar 

  • Yang H, Prewitt CT (2000) Chain and layer silicates at high temperatures and pressures. Rev Mineral Geochem 41(1):211–255

    Article  Google Scholar 

  • Zhao Y, Von Dreele RB, Shankland TJ, Weidner DJ, Ianzhong Zhang J, Wang Y, Gasparik T (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophys Res Lett 24(1):5–8

    Article  Google Scholar 

Download references

Acknowledgments

Roberto Gastoni CNR-Pavia is thanked for sample preparation for EMPA analyses, and R. Carampin of CNR Padova is thanked for help with the WDS electron microprobe facilities. M.C. Domeneghetti was funded by the Italian grant PRIN EARRRZ_005 (2010); M. Alvaro was funded by ERC starting Grant No. 307322 to F. Nestola; and F. Cámara was supported by “Progetti di ricerca finanziati dall’Università degli Studi di Torino (ex 60 %)”—year 2012. The experimental studies in Karato's lab were partially supported by grants from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Alvaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 65 kb)

Supplementary material 2 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandolfo, F., Cámara, F., Domeneghetti, M.C. et al. Volume thermal expansion along the jadeite–diopside join. Phys Chem Minerals 42, 1–14 (2015). https://doi.org/10.1007/s00269-014-0694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0694-9

Keywords

Navigation