Skip to main content

Advertisement

Log in

CO2 mineral sequestration by wollastonite carbonation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In this paper, we demonstrated a new approach to CO2 mineral sequestration using wollastonite carbonation assisted by sulfuric acid and ammonia. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and 29Si nuclear magnetic resonance. The change in Gibbs free energy from −223 kJ/mol for the leaching reaction of wollastonite to −101 kJ/mol for the carbonation reaction indicated that these two reactions can proceed spontaneously. The leached and carbonated wollastonite showed fibrous bassanite and granular calcium carbonate, respectively, while the crystal structure of pristine wollastonite was destroyed and the majority of the Ca2+ in pristine wollastonite leached. The chemical changes in the phases were monitored during the whole process. A high carbonation rate of 91.1 % could be obtained under the action of sulfuric acid and ammonia at 30 °C at normal atmospheric pressure, indicating its potential use for CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen FA, Brečević L (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand 45:1018–1024

    Article  Google Scholar 

  • Bao W, Li H, Zhang Y (2009) Process analysis and mechanism discussion of enhanced CO2 sequestration by mineral carbonation. Ciese J 60:2332–2337

    Google Scholar 

  • Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33:554–570

    Article  Google Scholar 

  • Bredesen R, Jordal K, Bolland O (2004) High-temperature membranes in power generation with CO2 capture. Chem Eng Process 43:1129–1158

    Article  Google Scholar 

  • Choi JW (1986) A study on the production of ammonium sulfate from by-produced gypsum. Thesis for the degree of Ph. D., Seoul National Univ. Korea

  • Chou MM, Bruinius JA, Benig V, Chou SFJ, Carty RH (2005) Producing ammonium sulfate from flue gas desulfurization by-product. Energy Sources 27:1061–1071

    Article  Google Scholar 

  • Daval D, Martinez I, Corvisier J, Findling N, Goffe B, Guyot F (2009a) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265:63–78

    Article  Google Scholar 

  • Daval D, Martinez I, Guigner JM, Hellmann R, Corvisier J, Findling N, Dominici C, Goffe B, Guyot F (2009b) Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. Am Mineral 94:1707–1726

    Article  Google Scholar 

  • Drage TC, Blackman JM, Pevida C, Snape CE (2009) Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23:2790–2796

    Article  Google Scholar 

  • Dunsmore HE (1992) A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral. Energy Convers Manag 33:565–572

    Article  Google Scholar 

  • Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  Google Scholar 

  • Handke M, Sitarz M, Mozgawa W (1998) Model of silicooxygen ring vibrations. J Mol Struct 450:229–238

    Article  Google Scholar 

  • Handke M, Sitarz M, Rokita M, Galuskin E (2003) Vibrational spectra of phosphate–silicate biomaterials. J Mol Struct 651–653:39–54

    Article  Google Scholar 

  • Hansson A, Bryngelsson M (2009) Expert opinions on carbon dioxide capture and storage—a framing of uncertainties and possibilities. Energy Policy 37:2273–2282

    Article  Google Scholar 

  • Hellmann R, Wirth R, Daval D, Barnes JP, Penisson JM, Tisserand D, Epicier T, Florin B, Hervig RL (2012) Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem Geol 294–295:203–216

    Article  Google Scholar 

  • Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, Van-Veen JAR (2010) Formation of acid sites in amorphous silica–alumina. J Catal 269:201–218

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251

    Article  Google Scholar 

  • Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26:341–354

    Article  Google Scholar 

  • Kojima T, Nagamine A, Ueno N, Uemiya S (1997) Absorption and fixation of carbon dioxide by rock weathering. Energy Convers Manag 38:S461–S466

    Article  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170

    Article  Google Scholar 

  • Lackner KS, Butt DP, Wendt CH (1997a) Progress on binding CO2 in mineral substrates. Energy Convers Manag 38:S259–S264

    Article  Google Scholar 

  • Lackner KS, Butt DP, Wendt CH (1997b) Magnesite disposal of carbon dioxide. In: Proceedings of the 22nd international technical conference on coal utilization and fuel system, Clearwater, Florida, pp 1–12

  • Luo S, Xu S, Tang H, Zhang W, Li X, Yin W (2010) Investigation of FTIR on the new reinforcement of gypsum whiskers. Spectrosc Spectr Anal 30:129–130

    Google Scholar 

  • Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andrésen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86:1627–1645

    Article  Google Scholar 

  • Meng KC, Williams RH, Celia MA (2007) Opportunities for low-cost CO2 storage demonstration projects in China. Energy Policy 35:2368–2378

    Article  Google Scholar 

  • Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  Google Scholar 

  • Montes-Hernandez G, Daval D, Findling N, Chiriac R, Renard F (2012) Linear growth rate of nanosized calcite synthesized via gas–solid carbonation of Ca(OH)2 particles in a static bed reactor. Chem Eng J 180:237–244

    Article  Google Scholar 

  • Mozgawa W, Sitarz M, Rokita M (1999) Spectroscopic studies of different aluminosilicate structures. J Mol Struct 511–512:251–257

    Article  Google Scholar 

  • O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Process 19:95–101

    Google Scholar 

  • Paluszkiewicz C, Blazewicz M, Podporska J, Gumuła T (2008) Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies. Vib Spectrosc 48:263–268

    Article  Google Scholar 

  • Prasad PSR, Chaitanya VK, Prasad KS, Rao DN (2005) Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am Mineral 90:672–678

    Article  Google Scholar 

  • Qiu Z (1991) A mineralogical study of calcite from Yinnan oxidized gold deposit, Ningxia, China. Acta Mineral Sin 11:21–26

    Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Rodriguez-Navarro C, Putnis A (2012) Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology 40:947–950

    Article  Google Scholar 

  • Ruiz-Santaquiteria C, Fernández-Jiménez A, Skibsted J, Palomo A (2013) Clay reactivity: production of alkali activated cements. Appl Clay Sci 73:11–16

    Article  Google Scholar 

  • Schott J, Pokrovsky OS, Spalla O, Devreux F, Gloter A, Mielczarski JA (2012) Formation, growth and transformation of leached layers during silicate minerals dissolution: the example of wollastonite. Geochim Cosmochim Acta 98:259–281

    Article  Google Scholar 

  • Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486

    Article  Google Scholar 

  • Shahwan T, Zünbül B, Tunusoğlu Ö, Eroğlu AE (2005) AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals. J Colloid Interface Sci 286:471–478

    Article  Google Scholar 

  • Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89:2651–2664

    Article  Google Scholar 

  • Sitarz M, Handke M, Mozgawa W (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochim Acta Part A 56:1819–1823

    Article  Google Scholar 

  • Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420

    Article  Google Scholar 

  • Tămăşan M, Radu T, Simon V (2013) Spectroscopic characterisation and in vitro behavior of kaolinite polyvinyl alcohol nanocomposite. Appl Clay Sci 72:147–154

    Article  Google Scholar 

  • Tang H, Sun S, Meng W, Liu H, Wang S, Li J (2013) Progress in carbon dioxide sequestration by mineral carbonation. China Metall 23:2–8

    Google Scholar 

  • Voormeij DA, Simandl GJ (2004) Geological, ocean, and mineral CO2 sequestration options: a technical review. Geosci Can 31:11–22

    Google Scholar 

  • Xu X, Song C, Miller BG, Scaroni AW (2005) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44:8113–8119

    Article  Google Scholar 

  • Yang H, Du C, Hu Y, Jin S, Yang W, Tang A, Avvakumov EG (2006) Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Appl Clay Sci 31:290–297

    Article  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  Google Scholar 

  • Zhang J, Zhao Y, Pan X, Xu J, Yan H, Wang Z, Zheng C (2008) Carbon dioxide sequestration as mineral carbonates with wollastonite. Prog Nat Sci 18:836–840

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (51225403) and Hunan Provincial Natural Science Fund for Innovative Research Groups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Fu, L., Ouyang, J. et al. CO2 mineral sequestration by wollastonite carbonation. Phys Chem Minerals 41, 489–496 (2014). https://doi.org/10.1007/s00269-014-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0659-z

Keywords

Navigation