Skip to main content
Log in

Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco)

Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This study is devoted to the physicochemical and mineralogical characterizations of palygorskite from Marrakech High Atlas, Morocco. The raw clay and its Na+-saturated <2 μm fraction were characterized using chemical, structural, and thermal analytical techniques. Measurements of specific surface area and porous volume are reported. The clay fraction was found to be made up of 95 % of palygorskite and 5 % of sepiolite. An original feature of this palygorskite is its deficiency in zeolitic H2O. The half-cell structural formula of its dehydrated form was determined on the basis of 21 oxygens to be (Si7.92Al0.08)(Mg2.15Al1.4Fe0.4Ti0.05 \( \square_{1} \))(Ca0.03Na0.08K0.04)O21, while the hydrated form could be formulated as (Si7.97Al0.03)(Mg2.17Al1.46Fe0.40Ti0.05)(Ca0.03Na0.07K0,03)O20.18(OH)1.94(OH2)3.88·2.43 H2O. These formulas show that the (Al3++Fe3+)/Mg2+ ratio is around 0.84, revealing a pronounced dioctahedral character. Further, inside its octahedral sheet, it was determined that the inner M1 sites are occupied by vacancies, whereas the M2 sites are shared between 90 % of trivalent cations (78 % for Al3+ and 22 % for Fe3+), 7.5 % of Mg2+, and 2.5 % of Ti4+, all of them linked to 1.94 of structural hydroxyls. The two remaining Mg2+ by half-cell occupy edge M3 sites and are coordinated to 3.88 molecules of OH2. Channels of this palygorskite are deficient in zeolitic H2O since they contain only 2.43 H2O molecules. A correlation was found between these results and the observation of very intense and well-resolved FTIR bands arising from dioctahedral domains (mainly Al2OH, Fe2OH, and AlFeOH) along with very small responses from a trioctahedral domain (Mg3OH). Accordingly, a schematic representation of the composition of the octahedral sheet was proposed. The cation exchange capacity, specific surface area, and total pore volume were also assessed to be ca. 21.2 meq/100 g, 116 m2/g, and 0.458 cm3/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aït Aghzzaf A, Rhouta B, Steinmetz J, Rocca E, Aranda L, Khalil A, Yvon J, Daoudi L (2012) Corrosion inhibitors based on chitosan-heptanoate modified beidellite. Appl Clay Sci 65–66:173–178

    Article  Google Scholar 

  • Al-Futaisi A, Jamrah A, Al-Rawas A, Al-Hanai S (2007) Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman). Environ Geol 51:1317–1327

    Article  Google Scholar 

  • Artioli G, Galli E (1994) The crystal structures of orthorhombic and monoclinic palygorskite. Mater Sci Forum 166–169:647–652

    Article  Google Scholar 

  • Artioli G, Galli E, Burattini E, Cappuccio G, Simeoni S (1994) Palygorskite from Bolca, Italy: a characterization by high-resolution synchrotron radiation powder diffraction and computer modelling. N Jb Miner Mh 5:217–229

    Google Scholar 

  • Augsburger MS, Strasser E, Perino E, Mercader RC, Pedregosa JC (1998) FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure. J Phys Chem Solids 59:175–180

    Article  Google Scholar 

  • Bailey SW (1980) Structures of layer silicates. In: GW Brindley, G Brown (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Society Monograph S, pp 1–123

  • Barett EP, Joyner LG, Halenda PF (1951) The determination of pore volume and area distribution in porous substances. Computation of nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  • Ben Aboud A, Lopez Galindo A, Fenoll Hach-Ali P, Chellai EH, Daoudi L (1996) The presence, genesis and significance of palygorskite in some Moroccan Tertiary sequences. In: Ortega M, López-Galindo A, Palomo I (eds) Advances in clay minerals. Spanish-Italian Meeting on Clay Minerals, Granada, pp 87–89

    Google Scholar 

  • Besson G, Decarreau A, Manceau A, Sanz J, Suquet H (1990) Organisation interne du feuillet. In Matériaux argileux: structures, propriétés et applications. In: Decarreau A (ed) Société Française de Minéralogie et de Cristallographie et Groupe Français des Argiles, pp 5–25

  • Blanco C, Gonzalez F, Pesquera C, Benito I, Mendioroz S, Pakhares JA (1989) Differences between one palygorskite and another magnesic by infrared spectroscopy. Spectrosc Lett 22:659–673

    Article  Google Scholar 

  • Bouabid R, Badraoui M (1996) QuantArg1: un modèle pour la quantification des minéraux argileux dans les sols et les sédiments. Hommes, Terre et Eaux 101:48–56

    Google Scholar 

  • Bouna L, Rhouta B, Amjoud M, Maury F, Lafont MC, Jada A, Senocq F, Daoudi L (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52:301–311

    Article  Google Scholar 

  • Bouna L, Rhouta B, Daoudi L, Maury F, Amjoud M, Senocq F, Lafont MC, Jada A, Aït Aghzzaf A (2012) Mineralogical and physico-chemical characterizations of ferruginous beidellite-rich clay from Agadir basin (Morocco). Clay Clay Miner 60:278–290

    Article  Google Scholar 

  • Bradley WF (1940) The structural scheme of attapulgite. Am Mineral 25:405–410

    Google Scholar 

  • Bruand A, Prost R (1988) Analyse minéralogique quantitative d’un échantillon de sol: utilisation des données concernant la composition chimique de l’échantillon. Agronomie 8:15–22

    Article  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Ceram Soc 60:309–319

    Article  Google Scholar 

  • Caillère S, Hénin S (1961) Palygorskite. In: G.W. Brindley, G. Brown (eds) X-ray identification and crystal structure of clay minerals. Mineralogical Society, Monograph 5, London. pp 343–353

  • Caillere S, Hénin S, Rautureau M (1982) Minéralogie des argiles, tome 1: structures et proprieties physic-chimiques. Ed Masson, Paris

    Google Scholar 

  • Cases JM, Grillet Y, François M, Michot L, Villiéras F, Yvon J (1991) Evolution of the porous structure and surface area of Palygorskite under vacuum thermal treatment. Clays Clay Miner 39(2):191–201

    Article  Google Scholar 

  • Chahi A, Petit S, Decarreau A (2002) Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite. Clay Clay Miner 50:306–313

    Article  Google Scholar 

  • Chellai EH, Marzoqi M, Pascal A, Mouflih M (1995) Stratigraphy and evolution of upper cretaceous-paleogene sedimentary systems in the Marrakech High Atlas (Morocco). C. R. Acad Sci II A, Paris 321:745–752

    Google Scholar 

  • Chisholm JE (1990) An X-ray powder-diffraction study of palygorskite. Can Mineral 28:329–339

    Google Scholar 

  • Chisholm JE (1992) Powder diffraction patterns and structural models for palygorskite. Can Mineral 30:61–73

    Google Scholar 

  • Christ CL, Hathaway JC, Hostetler PB, Shepard AO (1969) Palygorskite: new X- ray data. Am Mineral 54:198–205

    Google Scholar 

  • Daoudi L (2004) Palygorskite in the uppermost Cretaceous-Eocene Rocks from Marrakech high Atlas, Morocco. J Afr Earth Sci 39:353–358

    Article  Google Scholar 

  • Daoudi L, Deconninck JF (1994) Contrôles paléogéographique et diagénétique des successions sédimentaires argileuses du bassin atlasique au Crétacé (Haut Atlas occidental, Maroc). J Afr Earth Sci 18:123–134

    Article  Google Scholar 

  • De Boer JM, Lippens BC, Linsen BG, Broekhoff JCP, Van der Heuvel A, Osinga TJ (1966) The t-curve of multimolecular N2 adsorption. J Colloid Interf Sci 21:405–414

    Article  Google Scholar 

  • Engler P, Iyengar SS (1987) Analysis of mineral samples using combined instrument (XRD, TGA, ICP) procedures for phase quantification. Am Mineral 72:832–838

    Google Scholar 

  • Fernández ME, Ascencio JA, Mendoza-Anaya D, Rodriguez Lugo V, José-Yacamán M (1999) Experimental and theoretical studies of palygorskite clays. J Mater Sci 34:5243–5255

    Article  Google Scholar 

  • Frost RL, Ding Z (2003) Controlled thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim Acta 397:119–128

    Article  Google Scholar 

  • Galán E (1996) Properties and applications of palygorskite–sepiolite clays. Clay Miner 31:443–445

    Article  Google Scholar 

  • Galán E, Carretero I (1999) A new approach to compositional limits for sepiolite and palygorskite. Clay Clay Miner 47:399–409

    Article  Google Scholar 

  • Galán E, Mesa JM, Sanchez C (1994) Properties and applications of palygorskite clays from Ciudad Real, Central Spain. Appl Clay Sci 9:293–302

    Article  Google Scholar 

  • Galhano C, Rocha F, Gomes C (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal). Clay Miner 34:109–116

    Article  Google Scholar 

  • Garcia-Romero E, Suárez M (2010) On the c30 chemical composition of sepiolite and palygorskite. Clay Clay Miner 58:1–20

    Article  Google Scholar 

  • Garcia-Romero E, Suarez M, Santaren J, Alvarez A (2007) Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays Clay Miner 55:606–617

    Article  Google Scholar 

  • Gionis V, Kacandes GH, Kastritis ID, Chryssikos GD (2006) On the structure of palygorskite by mid- and near-infrared spectroscopy. Am Mineral 91:1125–1133

    Article  Google Scholar 

  • Gionis V, Kacandes GH, Kastritis ID, Chryssikos GD (2007) Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite. Clay Clay Miner 55:543–553

    Article  Google Scholar 

  • Giustetto R, Chiari G (2004) Crystal structure refinement of palygorskite from neutron powder diffraction. Eur J Mineral 16:521–532

    Article  Google Scholar 

  • Giustetto R, Compagnoni R (2011) An unusual occurrence of palygorskite from Montestrutto, Sesia-Lanzo Zone, Internal Western Alps (Italy). Clay Miner 46:371–385

    Article  Google Scholar 

  • Giustetto R, Wahyudi O, Corazzari I, Turci F (2011) Chemical stability and dehydration behavior of a sepiolite/indigo Maya Blue pigment. Appl Clay Sci 52:41–50

    Article  Google Scholar 

  • Goodman BA, Russel JD, Fraser AR (1976) A Mössbaauer and IR spectroscopic study of the structure of nontronite. Clay Clay Miner 24:53–59

    Article  Google Scholar 

  • Güven N, Caillere JPE, Fripiat JJ (1992) The coordination of aluminium ions in the palygorskite structure. Clay Clay Miner 40:457–461

    Article  Google Scholar 

  • Hayashi H, Otsuka R, Imai N (1969) Infrared study of sepiolite and palygorskite on heating. Am Miner 54:1613–1624

    Google Scholar 

  • Hodgson M, Dudeney AWL (1984) Estimation of clay proportions in mixtures by X-ray diffraction and computerized chemical mass balance. Clay Clay Miner 32:19–28

    Article  Google Scholar 

  • Holtzapffel T (1985) Les minéraux argileux : préparation, analyse diffractométrique et détermination. Société Géologique du Nord 12:15–43

    Google Scholar 

  • Huang YJ, Li Z, Li SZ, Shi ZL, Yin L, Hsia YF (2007) Mössbauer investigations of palygorskite from Xuyi, China. Nucl Instrum Meth B 260:657–662

    Article  Google Scholar 

  • Jones BF, Galan E (1988) Palygorskite and sepiolite. In: Bailey SW (ed) Hydrous phyllosilicates—reviews in mineralogy 19. Mineralogical Society of America, Washington, pp 631–674

    Google Scholar 

  • Komarneni S, Fyfe CA, Kennedy GJ (1986a) Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29 Si Magic-Angle Spinning-Nuclear magnetic resonance. Clay Clay Miner 34:99–102

    Article  Google Scholar 

  • Komarneni S, Fyfe CA, Kennedy G, Strobl H (1986b) Characterization of synthetic and naturally occurring clays by 27 Al and 29 Si Magic-Angle Spinning NMR spectroscopy. J Am Ceram Soc 69:C45–C47

    Google Scholar 

  • Krekeler MPS, Guggenheim S (2008) Defects in microstructures in palygorskite-sepiolite minerals: a transmission electron microscopy (TEM) study. Appl Clay Sci 39:98–105

    Article  Google Scholar 

  • Li X, Ni C, Yao C, Chen Z (2012) Development of attapulgite/Ce1-x ZrxO2 nanocomposite as catalyst for the degradation of methylene blue. Appl Catal B-Environ 117–118:118–124

    Article  Google Scholar 

  • Lippmaa E, Magi M, Samoson A, Engelhardt G, Grimmer A (1980) Structural studies of silicates by solid state high resolution Si-29 NMR. J Am Ceram Soc 102:4889–4893

    Article  Google Scholar 

  • Liu H, Chen T, Chang D, Chen D, He H, Yuan P, Xie J, Frost RL (2012) Characterization and catalytic performance of Fe3Ni8/palygorskite for catalytic cracking of benzene. Appl Clay Sci. doi:10.1016/j.clay.2012.04.005

    Google Scholar 

  • Mantin I, Glaeser R (1960) Fixation des ions cobalt hexamine par les montmorillonites acides. Bulletin du Groupe Français des Argiles 50:83–88

    Google Scholar 

  • Marzoqi M (1990) Les systèmes sédimentaires marins paléogènes d’Ait Ourir: Séquences de faciés-Modèle de paléomilieux-Géochimie des carbonates-Approche austatique. PhD thesis Cadi Ayyad University Marrakech Morocco. p 274

  • Mehra OP, Jackson ML (1956) Iron oxide removal from soils and clays by a dithionide-citrate system buffered with sodium bicarbonate. Seventh national conference on clays and clay minerals. pp 317–327

  • Mermut AR, Lagaly G (2001) Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clay Clay Miner 49:393–397

    Article  Google Scholar 

  • Mifsud A, Rautureau M, Fornes V (1978) Etude de l’eau dans la palygorskite à l’aide des analyses thermiques. Clay Miner 13:367–374

    Article  Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    Article  Google Scholar 

  • Pevear DR, Mumpton FA (1989) Quantitative mineral analysis of clays (1989) The Clay Minerals Society. Evergreen. Colorado. p 171

  • Polette-Niewold LA, Manciu FS, Torres B, JrM Alvarado, Chianelli RR (2007) Organic/inorganic complex pigments: ancient colors maya blue. J Inorg Biochem 101:1958–1973

    Article  Google Scholar 

  • Rautureau M, Caillere S, Hénin S (2004) Les argiles. Ed Septima, Paris

    Google Scholar 

  • Rhouta B, Kaddami H, Elbarqy J, Amjoud M, Daoudi L, Maury F, Senocq F, Maazouz A, Gerard JF (2008) Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques. Clay Miner 43:393–404

    Article  Google Scholar 

  • Rouquerol F, Luciani L, Llewellyn P, Denoyel R, Rouquerol J (2003) Texture des matériaux pulvérulents ou poreux. In Techniques de l’Ingénieur, traité Analyse et Caractérisation P1050:1–24

    Google Scholar 

  • Ruiz-Hitzky E (2001) Molecular access to intracrystalline tunnels of sepiolite. J Mater Chem 11:86–91

    Article  Google Scholar 

  • Serna C, Van Scoyoc GE, Ahlrichs JL (1977) Hydroxyl groups and water in palygorskite. Am Mineral 62:784–792

    Google Scholar 

  • Shariatmadari H (1998) Interactions of phosphates and selected organic molecules with palygorskite and sepiolite. PhD Thesis. University of Saskatchewan. p 213

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti R, Rouquerol J, Siemienwska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Su D, Wang C, Cai S, Mu C, Li D, Lin W (2012) Influence of palygorskite on the structure and thermal stability of collagen. Appl Clay Sci 62–63:41–46

    Article  Google Scholar 

  • Suárez M, García-Romero E (2006) FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl Clay Sci 31:154–163

    Article  Google Scholar 

  • Thorez J (1976) Practical identification of clay minerals. In: Lelotte G, Dison (ed) A handbook for teachers and students in clay mineralogy, Belgium

  • Van Olphen H (1966) Maya blue: a clay mineral-organic pigment? Science 154:645–646

    Article  Google Scholar 

  • Wang M, Liao L, Zhang X, Li Z (2012) Adsorption of low concentration humic acid from water by palygorskite. Appl Clay Sci 67–68:164–168

    Article  Google Scholar 

  • Woessner DE (1989) Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy. Am Mineral 74:203–215

    Google Scholar 

  • Yacamán MJ, Rendon J, Arenas J, Puche MCS (1996) Maya blue paint: an ancient nanostructured material. Science 273:223–225

    Article  Google Scholar 

  • Zhao D, Zhou J, Liu N (2006) Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+ -PG/TiO2) catalysts. Mat Sci Eng A-Struct 431:256–262

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the “Convention de coopération CNRST-Maroc/CNRS-France” (chemistry project N° 04/08), the “Programme de Coopération Scientifique Interuniversitaire de l’Agence Universitaire de la Francophonie” (N° 63 13PS826), the “Programme d’Action Intégrée Volubilis” (N° MA-08-185), and “Convention de coopération Académie Hassan II des Sciences et Techniques-Maroc/CSIC-Espagne” (Project AH11ST-Convention-nano 2011-2012) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benaissa Rhouta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhouta, B., Zatile, E., Bouna, L. et al. Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco). Phys Chem Minerals 40, 411–424 (2013). https://doi.org/10.1007/s00269-013-0579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0579-3

Keywords

Navigation