Skip to main content

Advertisement

Log in

Thermo-elastic behaviour of Be2BO3OH (hambergite) up to 7 GPa and 1,100 K

Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. PV data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T −1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10−5 K−1 and α 1 = −8.9(2) × 10−4 K −1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10−5 K−1 and α 1(a) = −1.4(2) × 10−4 K −1/2 for the a-axis, α 0(b) = 4.4(1) × 10−5 K−1 and α 1(b) = −5.9(3) × 10−4 K −1/2 for the b-axis, α 0(c) = 1.07(8) × 10−5 K−1 and α 1(c) = −1.5(2) × 10−4 K −1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Angel RJ (2000) Equations of State. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41, Mineralogical Society of America and Geochemical Society, Washington DC, pp 35–59

  • Angel RJ, Finger LW (2011) SINGLE: a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824

    Article  Google Scholar 

  • Burns PC, Novák M, Hawthorne FC (1995) Fluorine-hydroxyl variation in hambergite: a crystal-structure study. Can Mineral 33:1205–1213

    Google Scholar 

  • Chervin JC, Canny B, Mancinelli M (2001) Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Pressure Res 21:305–314

    Article  Google Scholar 

  • Gatta GD (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Z Kristallogr 223:160–170

    Article  Google Scholar 

  • Gatta GD, Angel RJ (2007) Elastic behavior and pressure-induced structural evolution of nepheline: implications for the nature of the modulated superstructure. Am Mineral 92:1446–1455

    Article  Google Scholar 

  • Gatta GD, Nestola F, Bromiley GD, Loose A (2006) New insight into crystal chemistry of topaz: a multi-methodological study. Am Mineral 91:1839–1846

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Pavese A (2008) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. Am Mineral 93:1588–1596

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Fisch M, Armbruster T (2010a) Stability at high pressure, elastic behavior and pressure-induced structural evolution of ‘‘Al5BO9’’, a mullite-type ceramic material. Phys Chem Miner 37:227–236

    Article  Google Scholar 

  • Gatta GD, Vignola P, McIntyre GJ, Diella V (2010b) On the crystal chemistry of londonite [(Cs, K, Rb)Al4Be5B11O28]: a single-crystal neutron diffraction study at 300 and 20 K. Am Mineral 95:1467–1472

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Lotti P, Pavese A, Curetti N (2010c) Structural evolution of a 2M 1 phengite mica up to 11 GPa: an in situ single-crystal X-ray diffraction study. Phys Chem Miner 37:581–591

    Article  Google Scholar 

  • Gatta GD, McIntyre GJ, Sassi R, Rotiroti N, Pavese A (2011a) Hydrogen-bond and cation partitioning in 2M 1-muscovite: A single-crystal neutron-diffraction study at 295 and 20 K. Am Mineral 96:34–41

    Article  Google Scholar 

  • Gatta GD, Vignola P, Lee Y (2011b) Stability of (Cs, K)Al4Be5B11O28 (londonite) at high pressure and high temperature: a potential neutron absorber material. Phys Chem Miner 38:429–434

    Article  Google Scholar 

  • Gatta GD, Angel RJ, Zhao J, Alvaro M, Rotiroti N, Carpenter MA (2011c) Phase stability, elastic behavior, and pressure-induced structural evolution of kalsilite: A ceramic material and high-T/high-P mineral. Am Mineral 96:1363–1372

    Article  Google Scholar 

  • Gatta GD, McIntyre GJ, Bromiley GD, Guastoni A, Nestola F (2012) A single-crystal neutron diffraction study of hambergite, Be2BO3(OH, F). Am Mineral 97:1891–1897

    Article  Google Scholar 

  • Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorphic Geol 16:309–343

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Miletich R, Allan DR, Kush WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Washington, pp 445–519

    Google Scholar 

  • Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 49:235–260

    Article  Google Scholar 

  • Novák M, Burns PC, Morgan GB (1998) Fluorine variation in hambergite from granitic pegmatites. Can Mineral 36:441–446

    Google Scholar 

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behaviour of hydrous minerals at high pressure and temperature: 1. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore. Am Mineral 81:335–340

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Switzer G, Clarke RS, Sinkankas JJ, Worthing HW (1965) Fluorine in hambergite. Am Mineral 50:85–95

    Google Scholar 

  • Zachariasen WH (1931) The crystalline structure of hambergite, Be2BO3(OH). Z Kristallogr 76:289–302

    Google Scholar 

  • Zachariasen WH (1934) The crystal lattice of boric acid, BO3H3. Z Kristallogr 88:150–161

    Google Scholar 

  • Zachariasen WH, Plettinger HA, Marezio M (1963) The structure and birefringence of hambergite, Be2BO3(OH). Acta Crystallogr 16:1144–1146

    Article  Google Scholar 

  • Zanazzi PF, Pavese A (2002) Behavior of micas at high pressure and high temperature. In: Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) Micas: crystal chemistry and metamorphic petrology, reviews in mineralogy and geochemistry, vol 46. Mineralogical Society of America and Geochemical Society, Washington, pp 99–116

    Google Scholar 

Download references

Acknowledgments

ELETTRA is thanked for the allocation of beam time. The Editor M. Rieder and two anonymous reviewers are thanked. GGD, PL and MM thank the Italian Ministry of Education, MIUR-Project: 2010EARRRZ_003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatta, G.D., Lotti, P., Nestola, F. et al. Thermo-elastic behaviour of Be2BO3OH (hambergite) up to 7 GPa and 1,100 K. Phys Chem Minerals 40, 401–409 (2013). https://doi.org/10.1007/s00269-013-0578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0578-4

Keywords

Navigation