Skip to main content

Advertisement

Log in

High-pressure X-ray study of LiCrSi2O6 clinopyroxene and the general compressibility trends for Li-clinopyroxenes

Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-pressure single-crystal X-ray diffraction measurements of synthetic LiCrSi2O6 clinopyroxene (with space group P21/c) were performed in a diamond-anvil cell up to 7.970 GPa. No phase transition has been observed within the pressure range investigated, but the elastic behavior at lower pressures (up to ~2.5 GPa) is affected by an anomalous softening due to the proximity of the phase transition to the HT-C2/c phase at 330 K and at ambient pressure. A third-order Birch–Murnaghan equation of state fitted to the compression data above 2.5 GPa yields a bulk modulus K T0 = 93(2) GPa and its first derivative K′ = 8.8(6). The structural data measured up to 7.970 GPa confirm that the space group P21/c is maintained throughout the whole pressure range investigated. The atomic parameters, obtained from the integrated diffraction intensities, suggest that the Li coordination polyhedron changes its coordination number from 5 to 6 at 6–7 GPa by means of the approach of the bridging O atom, related to the increased kinking of the B tetrahedral chain. Furthermore, at higher pressures, the structural evolution of LiCrSi2O6 provides evidence in the variation of kinking angles and bond lengths of a potential phase transition above 8 GPa to the HP-C2/c space group. A comparison of the Li-clinopyroxenes (M1 = Cr, Al, Sc, Ga, Mg + Fe) previously investigated and our sample shows that their elastic behavior and structural mechanisms of compression are analogous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvaro M, Nestola F, Boffa Ballaran T, Cámara F, Domeneghetti MC, Tazzoli V (2010) High-pressure phase transition of a natural pigeonite. Am Miner 95:300–311

    Article  Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Rev Mineral Geochem, vol 41, Mineralogical Society of America and Geochemical Society, Washington DC, pp 35–59

  • Angel RJ (2004) Absorption corrections for diamond-anvil cells implemented in the software package Absorb 6.0. J Appl Crystallogr 37:486–492

    Article  Google Scholar 

  • Angel RJ, Finger LW (2011) SINGLE: a program to control single crystal diffractometers. J Appl Crystallogr 44:247–251

    Article  Google Scholar 

  • Angel RJ, Hugh-Jones DA (1994) Equations of state and thermodynamic properties of enstatite pyroxenes. J Geophys Res 99:19777–19783

    Article  Google Scholar 

  • Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper mantle pressures. Nature 358:322–324

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ, Downs RT, Finger LW (2000) High-temperature–high pressure diffractometry. In: Hazen RM, Downs RT (eds) High temperature and high-pressure crystal chemistry. Rev Mineral Geochem, vol 41. Mineralogical Society of America and Geochemical Society, Washington DC, pp 559–596

  • Arlt T, Angel RJ (2000) Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Phys Chem Miner 27:719–731

    Article  Google Scholar 

  • Arlt T, Armbruster T (1997) The temperature dependent P21/c-C2/c phase transition in the clinopyroxene kanoite MnMg[Si2O6]: a single-crystal X-ray and optical study. Eur J Miner 9:953–964

    Google Scholar 

  • Arlt T, Angel RJ, Miletich R, Armbruster T, Peters T (1998) High-pres-sure P21/c-C2/c phase transitions in clinopyroxenes: influence of cation size and electronic structure. Am Miner 83:1176–1181

    Google Scholar 

  • Balić-Žunić T (2007) Use of three-dimensional parameters in the analysis of crystal structures under compression. In: Grzechnik A (ed) Pressure induced phase transitions. Transworld Research Network, Kerala, pp 157–184

    Google Scholar 

  • Balić-Žunić T, Makovicky E (1996) Determination of the centroid or “the best centre” of a coordination polyhedron. Acta Crystallogr B52:78–81

    Google Scholar 

  • Balić-Žunić T, Vickovic I (1996) IVTON—program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Article  Google Scholar 

  • Behruzi M, Hahn Th, Prewitt CT, Baldwin K (1984) Low- and high temperature structures of LiFeGe2O6, LiFeSi2O6 and LiCrSi2O6. Acta Cryst A 40(Suppl C):247

    Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  • Brown GE, Prewitt CT, Papike JJ, Sueno S (1972) A comparison of the structures of low and high pigeonite. J Geophys Res 7:5–92

    Google Scholar 

  • Cameron M, Papike JJ (1980) Crystal chemistry of silicate pyroxenes. In Prewitt CT (ed) Pyroxenes. Mineralogical Society of America, Rev Mineral 10:621–691

  • Christy AG, Angel RJ (1995) A model for the origin of the cell-doubling phase-transitions in clinopyroxene and body-centered anorthite. Phys Chem Miner 22:129–135

    Article  Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal chemical characterization of clinopyroxenes based on eight new structure refinements. Pyroxenes and amphiboles crystal chemistry and phase petrology. Miner Soc Am Spec Pap 2:31–50

    Google Scholar 

  • Gatta GD, Boffa Ballaran T, Iezzi G (2005) High-pressure X-ray and Raman study of a ferrian magnesian spodumene. Phys Chem Miner 32:132–139

    Article  Google Scholar 

  • Hausshül S (2007) Physical properties of crystals. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high pressure C2/c pyroxenes. Am Miner 79:1032–1041

    Google Scholar 

  • King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378

    Article  Google Scholar 

  • Makovicky E, Balić Žunić T (1998) New measure of distortion for coordination polyhedra. Acta Cryst B54:766–773

    Google Scholar 

  • Miletich R, Allan DR, Kush WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High temperature and high-pressure crystal chemistry. Rev Mineral Geochem, vol 41, Mineralogical Society of America and Geochemical Society, Washington DC, pp 445–519

  • Nestola F, Tribaudino M, Boffa Ballaran T (2004) High pressure behavior, transformation and crystal structure of synthetic iron-free pigeonite. Am Miner 89:189–196

    Google Scholar 

  • Nestola F, Boffa Ballaran T, Liebske C, Bruno M, Tribaudino M (2006) High-pressure behavior along the jadeite NaAlSi2O6–aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:417–425

    Article  Google Scholar 

  • Nestola F, Tribaudino M, Boffa Ballaran T, Liebske C, Bruno M (2007) The crystal structure of pyroxenes along the jadeite–hedenbergite and jadeite–aegirine joins. Am Miner 92:1492–1501

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Ohashi H (2008a) The high-pressure C2/c-P21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Balić-Žunić T, Secco L, Dal Negro A (2008b) The high-pressure behavior of Al- and Fe-rich natural orthopyroxene. Am Miner 93:644–652

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Liebske C, Thompson R, Downs RT (2008c) The effect of the hedenbergitic substitution on the compressibility of jadeite. Am Miner 93:1005–1013

    Article  Google Scholar 

  • Nestola F, Redhammer GJ, Pamato MG, Secco L, Dal Negro A (2009) High-pressure phase transformation in LiFeGe2O6 pyroxene. Am Miner 94:616–621

    Article  Google Scholar 

  • Origlieri M, Downs RT, Thompson RM, Pommier CJS, Denton MB, Harlow GE (2003) High-pressure crystal structure of kosmochlor, NaCrSi2O6 and systematics of anisotropic compression of pyroxenes. Am Miner 88:1025–1032

    Google Scholar 

  • Periotto B, Nestola F, Balić-Žunić T, Angel RJ, Miletich R, Olsen LA (2011) Comparison between beryllium and diamond-backing plates in diamond-anvil cells: application to single-crystal x-ray diffraction high-pressure data. Rev Sci Instrum 82:055111–055115

    Article  Google Scholar 

  • Periotto B, Nestola F, Balić-Žunić T, Pasqual D, Alvaro M, Ohashi H (2012) High-pressure behavior of NaInSi2O6 and the influence of Me3+ on the compressibility of NaMe3+Si2O6 silicates. Solid State Commun 152:132–137

    Article  Google Scholar 

  • Pommier CJS, Downs RT, Stimpfl M, Redhammer GJ, Denton MB (2005) Raman and X-ray investigations of LiFeSi2O6 pyroxene under pressure. J Raman Spectrosc 36:864–871

    Article  Google Scholar 

  • Pommier CJS, Redhammer GJ, Denton MB, Downs RT (2008) Raman spectroscopic and visible absorption investigation of LiCrSi2O6 pyroxene under pressure. Appl Spectrosc 62:766–772

    Article  Google Scholar 

  • Ralph RL, Finger LW (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. J Appl Crystallogr 15:537–539

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004a) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes—Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Z Kristallogr 219:278–294

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004b) Structural changes upon the temperature dependent C2/cP21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V, Sc and In. Z Kristallogr 219:585–605

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Paulus W, André G, Lottermoser W, Amthauer G, Treutmann W, Koppelhuber-Bitschnau B (2001) The crystal and magnetic structure of Li-aegirine LiFe3+Si2O6: a temperature-dependent study. Phys Chem Miner 28:337–346

    Article  Google Scholar 

  • Ross NL, Reynard B (1999) The effect of iron on the P21/c to C2/c transition in (Mg, Fe)SiO3 clinopyroxenes. Eur J Miner 11:585–589

    Google Scholar 

  • Schlenker JL, Gibbs GV, Boisen MB Jr (1978) Strain-tensor components expressed in terms of lattice parameters. Acta Crystallogr A A34:52–54

    Article  Google Scholar 

  • Sheldrick GM (2008) Programs for crystal structure analysis. University of Göttingen, Göttingen

    Google Scholar 

  • Smyth JR (1969) Orthopyroxenes-high-low-clinopyroxene inversions. Earth Planet Sci Lett 6:406–407

    Article  Google Scholar 

  • Thompson JB (1970) Geometrical possibilities for amphibole structures: model biopyriboles. Am Miner 55:292–293

    Google Scholar 

  • Thompson RM, Downs RT (2004) Model pyroxenes II: structural variation as a function of tetrahedral rotation. Am Mineral 89:614–628

    Google Scholar 

  • Ullrich A, Miletich R, Nestola F, Weikusat C, Ohashi H (2009) Lattice compression and structural behavior of NaVSi2O6 clinopyroxene to 11 GPa. Am Miner 94:557–564

    Article  Google Scholar 

  • Ullrich A, Miletich R, Balić-Žunić T, Olsen L, Nestola F, Wildner M, Ohashi H (2010) (Na, Ca)(Ti3+, Mg)Si2O6 clinopyroxenes at high pressures: influence of cation substitution on elasticity and phase transition. Phys Chem Miner 37:25–43

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Danish Agency for Science, Technology and Innovation. The contributions of R. J. A. were supported by National Science Foundation (NSF) Grant No. EAR-0738692 and of F. N. by “Progetto d’Ateneo 2006, Università degli Studi di Padova.” The authors thank the anonymous referees for their helpful reviews of the manuscript, as well the editorial handling of M. Rieder is really appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Periotto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Periotto, B., Angel, R.J., Nestola, F. et al. High-pressure X-ray study of LiCrSi2O6 clinopyroxene and the general compressibility trends for Li-clinopyroxenes. Phys Chem Minerals 40, 387–399 (2013). https://doi.org/10.1007/s00269-013-0569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0569-5

Keywords

Navigation