Skip to main content

Advertisement

Log in

Electrical conductivity of talc aggregates at 0.5 GPa: influence of dehydration

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Electrical conductivity of talc was measured at 0.5 GPa and ~473 to ~1,300 K by using impedance spectroscopy both before and after dehydration. Before dehydration, the electrical conductivity of talc increased with temperature and is ~10−4 S/m at 1,078 K. After dehydration, most of the talc changed to a mixture of enstatite and quartz and the total water content is reduced by a factor 6 or more. Despite this large reduction in the total water content, the electrical conductivity increased. The activation enthalpy of electrical conductivity (~125 kJ/mol) is too large for the conduction by free water but is consistent with conduction by small polaron. Our results show that a majority of hydrogen atoms in talc do not enhance electrical conductivity, implying the low mobility of the hydrogen atoms in talc. The observed small increase in conductivity after dehydration may be attributed to the increase in oxygen fugacity that enhances conductivity due to small polaron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagdassarov NS, Delépine N (2004) α–β Inversion in quartz from low frequency electrical impedance spectroscopy. J Phys Chem Solids 65:1517–1526

    Article  Google Scholar 

  • Bai L, Conway BE (1991) AC impedance of faradaic reactions involving electrosorbed intermediates: examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. J Electrochem Soc 138:2897–2907

    Article  Google Scholar 

  • Bailey E, Holloway JR (2000) Experimental determination of elastic properties of talc to 800 °C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci Lett 183:487–498

    Article  Google Scholar 

  • Bose K, Ganguly J (1994) Thermogravimetric study of the dehydration kinetics of talc. Am Mineral 79:692–699

    Google Scholar 

  • Brady JB (1995) Diffusion data for silicate minerals, glasses, and liquids. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. AGU Reference Shelf, vol 2. Washington, DC, pp 269–290

  • Evans BW, Guggenheim S (1988) Talc, pyrophyllite, and related minerals. Rev Mineral Geochem 19:225–294

    Google Scholar 

  • Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Plan Sci Lett 218:215–228

    Article  Google Scholar 

  • Guo Y, Wang D, Li H, Liu Z, Yu Y (2010) The electrical conductivity of granulite at high temperature and high pressure. Chin J Geophys 53:2681–2687. doi:10.3969/j.issn.0001-5733.2010.11.015

    Google Scholar 

  • Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys Earth Plan Inter 188:69–81. doi:10.1016/j.pepi.2011.06.012

    Article  Google Scholar 

  • Helffrich G, Abers GA (1997) Slab low-velocity layer in the eastern Aleutian subduction zone. Geophys J Int 130:640–648

    Article  Google Scholar 

  • Hicks TL, Secco RA (1997) Dehydration and decomposition of pyrophyllite at high pressures: electrical conductivity and X-ray diffraction studies to 5 GPa. Can J Earth Sci 34:875–882

    Article  Google Scholar 

  • Huebner JS, Dillenburg RG (1995) Impedance spectra of hot, dry silicate minerals and rock: qualitative interpretation of spectra. Am Mineral 80:46–64

    Google Scholar 

  • Ichiki M, Baba K, Toh H, Fuji-ta K (2009) An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia. Gondwana Res 16:545–562. doi:10.1016/j.gr.2009.04.007

    Article  Google Scholar 

  • Ito K (1990) Effects of H2O on elastic wave velocities in ultrabasic rocks at 900°C under 1 GPa. Phys Earth Planet Inter 61:260–268

    Article  Google Scholar 

  • Ito K, Tatsumi Y (1995) Measurement of elastic wave velocities in granulite and amphibolite having identical H2O free bulk compositions up to 850°C at 1 GPa. Earth Planet Sci Lett 133:255–264

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S, Wang D (2012) Electrical conductivity of minerals and rocks. In: Karato (ed) Physics and chemistry of the deep earth. Wiley-Blackwell (in press)

  • Kawakatsu H, Watada S (2007) Seismic evidence for deep-water transportation in the mantle. Science 316:1468–1471. doi:10.1126/science.1140855

    Article  Google Scholar 

  • Kurtz RD, DeLaurier JM, Gupta JC (1990) The electrical conductivity distribution beneath Vancouver Island: a region of active plate subduction. J Geophys Res 95:10929–10949

    Article  Google Scholar 

  • Liao J, Senna M (1992) Thermal behavior of mechanically amorphized talc. Thermochim Acta 197:295–306

    Article  Google Scholar 

  • Macdonald D (1978) A method for estimating impedance parameters for electrochemical systems for electrochemical systems that exhibit pseudoinductance. J Electrochem Soc Solid State Sci Technol 125:2062–2064

    Google Scholar 

  • Matsuzawa T, Umino N, Hasegawa A, Takagi A (1986) Upper mantle velocity structure estimated from Ps converted wave beneath the north-eastern Japan Arc. Geophys J R Astr Soc 86:767–781

    Article  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Article  Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26:2517–2520

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Reynard B, Mibe K, Van de Moortèle B (2011) Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett 307:387–394. doi:10.1016/j.epsl.2011.05.013

    Article  Google Scholar 

  • Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res 96:16205–16222

    Article  Google Scholar 

  • Tolland HG (1973) Mantel conductivity and electrical properties of garnet, mica and amphibole. Nature 241:35–36

    Google Scholar 

  • Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300 km, In: Fei et al (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, special publication no. 6, pp 259–281

  • Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity in olivine. Nature 443:977–980

    Article  Google Scholar 

  • Wang D, Li H, Yi L, Matsuzaki T, Yoshino T (2010) Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geophys Res 115:B09211. doi:10.1029/2009JB006695

    Article  Google Scholar 

  • Wang D, Guo Y, Yu Y, Karato S (2012) Electrical conductivity of amphibole-bearing rocks: influence of dehydration. Contrib Mineral Petrol. doi:10.1007/s00410-012-0722-z

    Google Scholar 

  • Wesolowski M (1984) Thermal decomposition of talc: a review. Thermochim Acta 78:395–421

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni H (2011) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol. doi:10.1007/s00410-011-0657-9

    Google Scholar 

  • Zhu M, Xie H, Guo J, Xu Z (2001) An experimental study on electrical conductivity of talc at high temperature and high pressure. Chin J Geophys 44:429–435 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

The authors’ thanks Y. Guo, Y. Yu, Z. Liu, D. Li, H. Li and Z. Jiang for their technical assistances. We thank Wyatt L. Du Frane, Fabrice Gaillard and an anonymous reviewer for their constructive comments. This work is partially supported by the important field program of Knowledge innovation Program (KZCX2-YW-QN608) and National Natural Science Foundation of China (NSFC, 40774036) and NSF of USA (EAR-0911465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duojun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Karato, Si. Electrical conductivity of talc aggregates at 0.5 GPa: influence of dehydration. Phys Chem Minerals 40, 11–17 (2013). https://doi.org/10.1007/s00269-012-0541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0541-9

Keywords

Navigation