Skip to main content

Advertisement

Log in

High-P, T phase relations in the NaAlSi2O6 system from first principles computation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Vibrational density of states of the NaAlSi2O6 jadeite and NaAlSiO4 calcium ferrite (CF)-type, and SiO2 stishovite is calculated as a function of pressure up to 50 GPa using density functional perturbation theory. The calculated frequencies are used to determine the thermal contribution to the Helmholtz free energy within the quasi-harmonic approximation and to derive the equation of state and several thermodynamic properties of interest. A dissociation of jadeite into a mixture of a CF-type phase and stishovite is predicted to occur at 23.4 GPa and 1,800 K with a positive Clapeyron slope of 2.8 MPa/K. Elastic anisotropy for jadeite, the CF-type phase, and stishovite also computed clearly shows that stishovite and the CF-type phase are the most anisotropic and isotropic in these three phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaogi M, Tanaka A, Kobayashi M, Fukushima N, Suzuki T (2002) High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Phys Earth Planet Inter 130:49–58

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  • Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astr Soc 66:579–596

    Article  Google Scholar 

  • Ceperley D, Alder B (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  Google Scholar 

  • Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294:354–357

    Article  Google Scholar 

  • Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Cond Mat 21:395502–395521

    Article  Google Scholar 

  • Hamman DR (1996) Generalized gradient theory for silica phase transitions. Phys Rev Lett 76:660–663

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Karki BB, Stixrude L, Crain J (1997) Ab initio elasticity of three high-pressure polymorphs of silica. Geophys Res Lett 24:3269–3272

    Article  Google Scholar 

  • Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (2000) High-pressure lattice dynamics and thermoelasticity of MgO. Phys Rev B 61:8793–8800

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2010) Ab initio investigation of high-pressure phase relation and elasticity in the NaAlSi2O6 system. Geophys Res Lett 37:L17302. doi:10.1029/2010GL044310

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2012a) Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles. Am Min 97:305–314

    Google Scholar 

  • Kawai K, Tsuchiya T (2012b) First-principles investigations of elasticity and phase transition of grossular garnet. J. Geophys. Res 117:B02202. doi:10.1029/2011JB008529

  • Kawai K, Tsuchiya T, Tsuchiya J, Maruyama S (2009) Lost primordial continents. Gondwana Res 16:581–586

    Article  Google Scholar 

  • Liu LG (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet Sci Lett 37:438–444

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Scholl DW, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc Am Mem 200:9–32

    Article  Google Scholar 

  • Simmons NA, Gurrola H (2000) Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature 405:559–562

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford 312 pp

    Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotential for planewave calculations. Phys Rev B 43:1993–2006

    Article  Google Scholar 

  • Tsuchiya T (2011) Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Phys Earth Planet Inter 188:142–149

    Article  Google Scholar 

  • Tsuchiya T, Caracas R, Tsuchiya J (2004) First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophys Res Lett 31:L11610. doi:10.1029/2004GL019649

    Article  Google Scholar 

  • Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Vibrational and thermodynamic properties of MgSiO3 postperovskite. J Geophys Res 110:B02204. doi:10.1029/2004JB003409

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Wu Y, Fei Y, Jin ZLX (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284

    Article  Google Scholar 

  • Yagi A, Suzuki T, Akaogi M (1994) High-pressure transitions in the system KAlSi3O8–NaAlSi3O8. Phys Chem Min 21:12–17

    Article  Google Scholar 

  • Yu YG, Wentzcovitch RM, Tsuchiya T, Umemoto K, Weidner DJ (2007) First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett 34:L10306. doi:10.1029/2007GL029462

    Article  Google Scholar 

  • Zhao Y, Von Dreele RB, Shankland TJ, Weidner DJ, Zhang J, Wang Y, Gasparik T (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophys Res Lett 24:5–8

    Article  Google Scholar 

Download references

Acknowledgments

We thank Shinji Yamamoto for valuable discussions. This work was completed under the supports in part of KAKENHI (Grant No. 23540560) to TT and of Ehime Univ. Global Centers of Excellence program ``Deep Earth Mineralogy’’ to TT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, K., Tsuchiya, T. High-P, T phase relations in the NaAlSi2O6 system from first principles computation. Phys Chem Minerals 39, 305–310 (2012). https://doi.org/10.1007/s00269-012-0485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0485-0

Keywords

Navigation