Skip to main content

Advertisement

Log in

Phase relations in Fe–Ni–C system at high pressures and temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We performed comparative study of phase relations in Fe1−x Ni x (0.10 ≤ x ≤ 0.22 atomic fraction) and Fe0.90Ni0.10−x C x (0.1 ≤ x ≤ 0.5 atomic fraction) systems at pressures to 45 GPa and temperatures to 2,600 K using laser-heated diamond anvil cell and large-volume press (LVP) techniques. We show that laser heating of Fe,Ni alloys in DAC even to relatively low temperatures can lead to the contamination of the sample with the carbon coming from diamond anvils, which results in the decomposition of the alloy into iron- and nickel-rich phases. Based on the results of LVP experiments with Fe–Ni–C system (at pressures up to 20 GPa and temperatures to 2,300 K) we demonstrate decrease of carbon solubility in Fe,Ni alloy with pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akimoto S (1987) High-pressure research in geophysics: past, present, and future, in high-pressure research in mineral physics. In: Manghnani MH, Syono Y (eds) Terra Scientific Publishing Company, Tokyo, pp 1–13

  • Alfè D (2009) Temperature of the inner-core boundary of the Earth: melting of iron at high pressure from first-principles coexistence simulations. Phys Rev B (Rapids) 79:060101(R)

    Google Scholar 

  • Allégre CJ, Poirier J-P, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  • Badding JV, Mao H-K, Hemley RJ (1991) High-pressure chemistry of hydrogen in metals: in-situ study of iron-hydrate. Science 253:421–424

    Article  Google Scholar 

  • Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 57:227–286

    Article  Google Scholar 

  • Boehler R (1986) The phase diagram of iron to 430 kbar. Geophys Res Lett 13:1153–1156

    Article  Google Scholar 

  • Boehler R (1993) Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 363:534–536

    Article  Google Scholar 

  • Brown JM (2000) The NaCl pressure standard. J Appl Phys 86:5801–5808

    Article  Google Scholar 

  • Brown JM, McQueen RG (1986) Phase transitions, grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J Geophys Res 91:7485–7494

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The qualitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Cohen RE, Mukherjee S (2004) Non-collinear magnetism in iron at high pressures. Phys Earth Planet Int 143–144:445–453

    Article  Google Scholar 

  • Dabrowski L, Suwalski J, Sidzhimov B, Christov V (1994) Investigations of ordering dynamics in carbon martensite. Acta Metall Mater 42(7):2375–2380

    Article  Google Scholar 

  • Dasgupta R, Walker D (2008) Carbon in the core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle. Geochim Cosmochim Acta 72:4627–4641

    Article  Google Scholar 

  • Dewaele A, Loubeyre P, Occelli F et al (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Phys Rev Lett 97:215504–215507

    Article  Google Scholar 

  • Dubrovinsky LS, Saxena SK, Lazor P (1998) High-pressure and high-temperature X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell. Phys Chem Miner 25:434–441

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Abrikosov IA et al (2001) Pressure induced invar effect in Fe,Ni alloys. Phys Rev Lett 86:4851–4854

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Narygina O et al (2007) Body-centered cubic iron–nickel alloy in Earth’s core. Science 316:1880–1883

    Article  Google Scholar 

  • Fei Y, Mao H-K (1994) In situ determination of the Ni–As phase of FeO at high pressure and temperature. Science 266:1678–1680

    Article  Google Scholar 

  • Fei Y, Preitt CT, Mao H-K, Bretka CM (1995) Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science 268:1892–1894

    Article  Google Scholar 

  • Fei Y, Li J, Bertka CM, Preitt CT (2000) Structure type and bulk modulus of Fe3S a new iron–sulfur compound. Am Mineral 85:1830–1833

    Google Scholar 

  • Fei Y, Wang Y, Deng L (2007) Melting relations in Fe–C–S system at high pressure implications for the chemistry of the cores of terrestrial planets. Lunar and Planetary Science conference XXXVIII, abstract 1231

  • Fialin M, Catillon G, Andrault D (2009) Disproportionation of Fe2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen. Phys Chem Miner 36:183–191

    Article  Google Scholar 

  • Frost DJ, Langenhorst F, van Aken PA (2001) Fe–Mg partitioning between ringwoodite and magnesiowustite and the effect of pressure, temperature and oxygen fugacity. Phys Chem Miner 28:455–470

    Article  Google Scholar 

  • Funamori N, Yagi T, Uchida T (1996) High-pressure and high-temperature in-situ X-ray diffraction study of iron to above 68 GPa using MA8-type apparatus. Geophys Res Lett 23:953–956

    Article  Google Scholar 

  • Génin J-M (1987) The clustering and coarsening of carbon multiplets during the aging of martensite from Mössbauer spectroscopy: the pre-precipitation stage of epsilon carbide. Metall Mater Trans A 18:1371–1388

    Article  Google Scholar 

  • Génin J-M, Flinn PA (1966) Mössbauer effect evidence for the clustering of carbon atoms in iron–carbon martensite during aging at room temperature. Phys Lett 22:392–393

    Article  Google Scholar 

  • Gielen PM, Kaplow R (1967) Mössbauer effect in iron–carbon and iron–nitrogen alloys. Acta Metall 15:49–63

    Article  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London, pp 314–315 and the references therein

  • Gulyaev AP (1977) Metallovedenie, metallurgy, Moscow

  • Hammersley AP (1998) FIT2D V9.129 reference manual V3.1 ESRF internal report ESRF98HA01T. http://www.esrf.eu/computing/scientific/FIT2D/FIT2D_REF/fit2d_r.html

  • Heinz DL, Sweeney JS, Miller P (1991) A laser-heating system that stabilizes and controls the temperature—diamond anvil cell applications. Rev Sci Instrum 62:1568–1575

    Article  Google Scholar 

  • HStC O’Neill, Palme H (1998) Composition of the silicate Earth: implications for accretion and core formation. In: Jackson I (ed) The Earth’s mantle. Cambridge University Press, Cambridge, pp 3–12

    Google Scholar 

  • Huang E, Bassett W, Weathers MS (1988) Phase relationships in Fe,Ni alloys at high pressures and temperatures. J Geophys Res 93:7741–7746

    Article  Google Scholar 

  • Huang E, Bassett W, Weathers MS (1992) Phase diagram and elastic properties of Fe 30% Ni alloy by synchrotron radiation. J Geophys Res 97:4497–4502

    Article  Google Scholar 

  • Huang L, Skorodumova NV, Belonoshko AB et al (2005) Carbon in iron phases under high pressure. Geophys Res Lett 32:L21314

    Article  Google Scholar 

  • Ino H, Ito T, Nasu S, Gonser U (1982) A study of interstitial atom configuration in fresh and aged iron–carbon martensite by Mossbauer spectroscopy. Acta Metall 30:9–20

    Article  Google Scholar 

  • Jiang DE, Carter EA (2003) Carbon dissolution and diffusion in ferrite and austenite from first principles. Phys Rev B 67:214103–214111

    Article  Google Scholar 

  • Kakeshita T, Shimizu K, Akahama Y et al (1988) Effect of hydrostatic pressure on martensitic transformations in Fe,Ni and Fe,Ni–C alloys. Trans Jpn Inst Met 29:109–115

    Google Scholar 

  • Knittel E, Williams Q (1995) Static compression of ε-FeSi and evolution of reduced silicon as a deep Earth constituent. Geophys Res Lett 22:445–448

    Article  Google Scholar 

  • Komabayashi T, Fei Y, Meng Y, Prakapenka V (2009) In-situ X-ray diffraction measurements of the γ–ε transition boundary of iron in an internally-heated diamond anvil cell. Earth Plant Sci Lett 282:252–257

    Article  Google Scholar 

  • Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite, and perovskite. Phys Earth Planet Int 125:105–112

    Google Scholar 

  • Kubo A, Ito E, Katsura T, Shinmei T, Yamada H, Nishikawa O, Song M, Funakoshi K (2003) In situ X-ray observation of iron using Kawai-type apparatus equipped with sintered diamond: absence of β phase up to 44 GPa and 2,100 K. Geophys Res Lett 30:1126–1130

    Article  Google Scholar 

  • Kurdjumov G, Kaminsky E (1928) X-ray studies of the structure of quenched carbon steel. Nature 122:475–476

    Article  Google Scholar 

  • Kurdjumov G, Kaminsky E (1929) Eine röntgenographische Untersuchung der Struktur des gehärteten. Kohlenstoffstahls Z Phys 53:696–707

    Article  Google Scholar 

  • Laio A, Bernard S, Chiarotti GL et al (2000) Physics of iron at Earth’s core conditions. Science 287:1027–1030

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86, p 748

  • Lin J-F, Heinz DL, Campbell AJ et al (2002) Iron–nickel alloy in the Earth’s core. Geophys Res Lett 29:109–111

    Google Scholar 

  • Liu J, Dubrovinsky LS, Boffa Ballaran T, Crichton W (2007) Equation of state and thermal expansivity of LiF and NaF. High Press Res 27:483–489

    Article  Google Scholar 

  • Lord OT, Walter MJ, Dasgupta R et al (2009) Melting in the Fe–C system to 70 GPa. Earth Planet Sci Lett 284:157–167

    Article  Google Scholar 

  • Manghnani MH, Syono Y (1987) High pressure research in mineral physics. Terra Scientific Publishing Company, Tokyo

    Google Scholar 

  • Mao H-K, Xu J, Bell PM (1986) Calibration of the ruby pressure gage to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Mao H-K, Bell PM, Hadidiacos C (1987) Experimental phase relations of iron to 360 kbar, 1,400 C, determined in and internally heated diamond-anvil apparatus. In: Manghnani MH, Syono Y (eds) High pressure research in mineral physics. Terra Scientific Publishing Company, Tokyo, pp 135–138

    Google Scholar 

  • Mao W, Campbell AJ, Heinz DL, Shen G (2006) Phase relations of Fe,Ni alloys at high pressure and temperature. Phys Earth Planet Int 155:146–151

    Article  Google Scholar 

  • Martens A (1878a) Ueber die mikroskopische Untersuchung des Eisens. Z Vereines Deutscher Ingenieure 22:11–18

    Google Scholar 

  • Martens A (1878b) Zur Mikrostructurdes Spiegeleisens—Die Erscheinungen auf den Bruchflächen. Z Vereines Deutscher Ingenieure 22:205–214

    Google Scholar 

  • Martens A (1878c) Zur Mikrostructurdes Spiegeleisens—Die Erscheinungen auf den Schliffflächen. Z Vereines Deutscher Ingenieure 22:481–488

    Google Scholar 

  • Mazur J (1950) Lattice parameters of martensite and of austenite. Nature 166:828

    Article  Google Scholar 

  • McCammon CA, Rubie DC, Ross CR II, Sieifert F, HStC O’Neill (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am Mineral 77:894–897

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Morito S, Huang X, Furuhara T et al (2006) The morphology and crystallography of lath martensite in alloy steels. Acta Mater 54:5323–5331

    Article  Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L033004.1–L033004.4

    Article  Google Scholar 

  • Nakajima T, Takahashi E, Suzuki T, Funakoshi KI (2009) “Carbon in the core” revisited. Phys Earth Planet Inter 174:202–211

    Article  Google Scholar 

  • Ohta K, Onoda S, Hirose K et al (2008) The electrical conductivity of post-perovskite in Earth’s D’’ layer. Science 320:89–91

    Article  Google Scholar 

  • Patel JR, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1:531–538

    Article  Google Scholar 

  • Poirier J-P (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Inter 85:319–337

    Article  Google Scholar 

  • Prakapenka VB, Shen G, Dubrovinsky LS (2003/2004) Carbon transport in diamond anvil cells. High Temp High Press 35/36:237–249

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, Berlin

    Google Scholar 

  • Roberts CS (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans Am Inst Metall Eng 197:203–204

    Google Scholar 

  • Rouquette J, Dolejš D, Kantor IYu et al (2008) Iron–carbon interactions at high temperatures and pressures. Appl Phys Lett 92:121912.1–121912.3

    Article  Google Scholar 

  • Sanloup C, Guyot F, Gillet P et al (2000) Density measurements of liquid Fe–S alloys at high-pressure. Geophys Res Lett 27:811–814

    Article  Google Scholar 

  • Schen G, Mao H-K, Hemley RJ et al (1998) Melting and crystal structure of iron at high pressures and temperatures. Geophys Res Lett 25:373–376

    Article  Google Scholar 

  • Scott HP, Williams Q, Knittle E (2001) Stability and equation of state of Fe3C to 73 GPa: implications for carbon in the Earth’s core. Geophys Res Lett 28:1875–1878

    Article  Google Scholar 

  • Shackelford J (2001) CRC materials science and engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  • Shallcross S, Kissavos AE, Sharma S, Meded V (2006) Noncollinear order in the γ-Fe system: generalized Heisenberg approach. Phys Rev B 73:104443–104448

    Article  Google Scholar 

  • Stevens W, Haynes AG (1956) The temperature of forming martensite and bainite in low-alloy steels. J Iron Steel Inst 183:349–359

    Google Scholar 

  • Stixrude L, Cohen RE, Singh DJ (1994) Iron at high pressure: linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys Rev B 50:6442–6445

    Article  Google Scholar 

  • Troiano A, Greninger A (1946) The martensite transformation. Metal Prog 50:303–307

    Google Scholar 

  • Vocadlo L, Alfè D, Brodholt J et al (2000) Ab-initio free energy calculations on the polymorphs of iron at core conditions. Phys Earth Planet Int 117:123–137

    Article  Google Scholar 

  • Williams Q, Jeanloz R, Bass J et al (1987) The melting curve of iron to 250 gigapascals: a constraint on the temperature at the Earth’s center. Science 236:181–182

    Article  Google Scholar 

  • Wood BJ (1993) Carbon in the core. Earth Planet Sci Lett 117:593–607

    Article  Google Scholar 

  • Xiao L, Fan Z, Jinxiu Z (1995) Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study. Phys Rev B 52:9970–9978

    Article  Google Scholar 

  • Xie ZL, Sundqvist B, Hiinninen H et al (1993) Isothermal martensitic transformation under hydrostatic pressure in an Fe,Ni–C alloy at low temperatures. Acta Metall Mater 41:2283–2290

    Article  Google Scholar 

  • Yoo CS, Holmes NC, Ross M et al (1993) Shock temperatures and melting of iron at Earth core conditions. Phys Rev Lett 70:3931–3934

    Article  Google Scholar 

Download references

Acknowledgments

The project was partly supported by funds from the German Science Foundation (DFG) Priority Programme SPP1236 under project Mc 3/16-1 and the Eurocores EuroMinSci Programme. We thank Daniel J. Frost (Bayerisches Geoinstitut) for help with multianvil experiments as well as Hubert Schulze and Uwe Dittmann (Bayerisches Geoinstitut) for preparation of the quenched samples for further analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Narygina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narygina, O., Dubrovinsky, L.S., Miyajima, N. et al. Phase relations in Fe–Ni–C system at high pressures and temperatures. Phys Chem Minerals 38, 203–214 (2011). https://doi.org/10.1007/s00269-010-0396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0396-x

Keywords

Navigation