Skip to main content
Log in

The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida SP, Proença CEB, Sano SM, Ribeiro JF (1998) Cerrado: espécies vegetais úteis, 462. Embrapa-CPAC, Planaltina, DF

  • Assad ED, Pellegrino GQ, Pinto HS (2010) Mudanças climáticas e o Semiárido brasileiro ICID + 18. In: 2ª Conferência Internacional: Clima, Sustentabilidade e Desenvolvimento em Regiões Semiáridas. 13. 16–20 de Agosto. Fortaleza. Ceará

  • Beck J (2013) Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses? Clim Change 116(2013):177–189

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, p 488

    Google Scholar 

  • Diniz-Filho JAF, Nabout JC, Telles MPC, Soares TN, Rangel TFLVB (2009a) A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genet Mol Biol 32:203–211

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Nogues-Bravo D, Araújo MB (2009b) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Diniz-Filho JAF, Oliveira G, Bini LM, Loyola RD, Nabout JC, Rangel TFLVB (2009c) Conservation biogeography and climate change in the Brazilian Cerrado. Nat Conserv 7:100–112

    Google Scholar 

  • Diniz-Filho JAF, Nabout JC, Bini LM, Loyola RD, Rangel TFLVB, Nogues-Bravo D, Araújo MB (2010) Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conser Divers 3:213–221

    Google Scholar 

  • Diniz-Filho JAF, Rodrigues H, Telles MPC, Oliveira G, Terribile LC, Soares TN, Nabout JC (2015) Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Mol Ecol Res 15:1059–1066. doi:10.1111/1755-0998.12374

    Article  Google Scholar 

  • Elith JCH, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Sys 40:677–697

    Article  Google Scholar 

  • Elith JCH, Anderson RP, Dudík M et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ferreira MB (1973) Frutos comestíveis do Distrito Federal. III. Pequi, mangaba, marolo e mamãozinho. Cerrado, Brasília, 20(5):22–25

  • Grossmann WD, Steininger K, Grossmann I, Magaard L (2009) Indicators on economic risk from global climate change. Environ Sci Technol 43:6421–6426

    Article  CAS  Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Karl TR, Trenberth KE (2005) What is Climate Change? In: Lovejoy JE, Hannah LJ (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 15–30

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  Google Scholar 

  • Lima ILP, Scariot A, Giroldo AB (2013) Sustainable harvest of mangaba (Hancornia speciosa) fruits in northern minas Gerais, Brazil. Econ Bot 6(3):234–243

    Article  Google Scholar 

  • Lopes CA, Silva GO, Cruz EM, Assad ED, Pereira AS (2011) Uma análise do efeito do aquecimento global na produção de batata no Brasil. Horticul Brasil 29(1):7–15

    Google Scholar 

  • Lorenzi H (1992). Árvores brasileiras: manual de identificação de plantas nativas do Brasil. Plantarum, Nova Odessa, p 368

  • Monachino J (1945) A revision of Hancornia (Apocynaceae). Lilloa, Tucumán 11:19–48

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kents J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  Google Scholar 

  • Nabout JC, De Marco P, Bini LM, Diniz-Filho JAF (2009) Distribuição geográfica potencial de espécies americanas do caranguejo violinista (Uca spp.) (Crustacea, Decapoda) com base em modelagem de nicho ecológico. Iheringia 99:98–104

    Article  Google Scholar 

  • Nabout JC, Oliveira G, Magalhaes MR, Terribile LC, Almeida FAS (2011) Global climate change and the production of “Pequi” fruits (Caryocar brasiliense) in the Brazilian Cerrado. Nat Conserv 9:55–60

    Article  Google Scholar 

  • Nabout JC, Carvalho P, Prado MU, Borges PP, Haddad KB, Machado KB, Michelan TS, Cunha HF, Soares TN (2012) Trends and biases in global climate change literature. Nat Conserv 10(1):45–51

    Article  Google Scholar 

  • Nemésio A, Cerântola NCM, Vasconcelos HL, Nabout JC, Silveira FA, Del Lama MA (2012) Searching for Euglossa cyanochlora Moure, 1996 (Hymenoptera: Apidae), one of the rarest bees in the world. J Insect Conserv 16:745–755

    Article  Google Scholar 

  • Parmesan C (2009) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Sys 37:637–690

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011). Ecological niches and geographic distributions. Princeton University Press, Princeton, p 314

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 31(1):46–50

    Article  Google Scholar 

  • Reid VW, Chen D, Goldfarb L, Hackmann H, Lee YT, Mokhele K, Ostrom E, Raivio K, Rockström J, Schellnhuber HJ, Whyte A (2010) Earth system science for global sustainability: grand challenges. Science 330:916–917

    Article  CAS  Google Scholar 

  • Rizzini CT (1997) Tratado de Fitogeografia do Brasil: Aspectos ecológicos, sociologicos e florísticos. Ed. Universidade de Sao Paulo, São Paulo 747

  • Sawyer D (2008) Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado. Philos Trans R Soc B 363:1747–1752

    Article  Google Scholar 

  • Scherr SJ, Mcneely JA (2007) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc 10:1098

    Google Scholar 

  • Schmitz H, Mota DM, Júnior JFS (2009) Gestão coletiva de bens comuns no extrativismo da mangaba no nordeste do Brasil. Amb Soc 12(2):273–292

    Article  Google Scholar 

  • Shanley P, Pierce AR, Laird SA, Guillen A (2002) Tapping the green market: certification and management of non–timber forest products. Earthscan Publications, London

    Google Scholar 

  • Simon LM, Oliveira G, Barreto BS, Nabout JC, Rangel TFLVB, Diniz-Filho JAF (2013) Effects of global climate changes on geographical distribution patterns of economically important plant species in cerrado. Revista Árvore 37:267–274

    Article  Google Scholar 

  • Soares TN, Diniz-Filho JAF, Nabout JC, Telles MPC, Chaves LJ (2015) Patterns of genetic variability in central and peripheral populations of Dipteryx alata (Fabaceae) in the Brazilian Cerrado. Plant Syst Evol 301:1315–1324

    Article  CAS  Google Scholar 

  • Tavares R (1964) Contribuição para o estudo da cobertura vegetal dos tabuleiros do Nordeste. Sudene Bol Rec Na. 2:13–25

    Google Scholar 

  • Thuiller W, Albert CH, Dubuis A, Randin C, Guisan A (2010) Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol Lett 23:120–123

    Article  Google Scholar 

  • Tôrres NM, De Marco P, Santos T, Silveira L, Jacomo ATA, Diniz-Filho JAF (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Divers Distr 18:615–627

    Article  Google Scholar 

  • Van Der Wal J, Shoo LT, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174:282–291

    Article  Google Scholar 

Download references

Acknowledgments

We dedicate this work to Professor. Dr. Roberto Prado de Morais (in memoriam) for encouragement and dedication to the study of Environmental Sciences. JCN and HFC were partially supported by CAPES and Fundação de Amparo a Pesquisa do Estado de Goiás (Auxpe 2036/2013). The work by JCN has been supported by CNPq grant (306719/2013-4). HFC was supported by University Research and Scientific Production Support Program (PROBIP/UEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos Nabout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabout, J.C., Magalhães, M.R., de Amorim Gomes, M.A. et al. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environmental Management 57, 814–821 (2016). https://doi.org/10.1007/s00267-016-0659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-016-0659-5

Keywords

Navigation