Skip to main content

Advertisement

Log in

A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Source: Canadian Forest Service, National Forestry Database, http://nfdp.ccfm.org/data/graph_31_a_e.php (verified 17th September 2012)

References

  • Achard F, Eva HD, Mollicone D, Beuchle R (2008) The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos Trans R Soc B-Biol Sci 363:2331–2339

    Article  Google Scholar 

  • Alexandrian D (1995) Livre blanc “Routes et incendies”—Le cas du département des Bouches-du-Rhône, CETE Méditerranée

  • Alexandrian D, Gouiran M (1990) Les incendies de forêts en France. Revue Forestière Française XLII. No special, pp 34–41

  • Altobellis AT (1983) A survey of rural population density and forest fire occurrence in the South, 1956–1970: USDA Forest Service, Southern Forest Experiment Station, Research Note SO-294, New Orleans

  • Amatulli G, Perez-Cabello F, de la Riva J (2007) Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol model 20:321–333

    Article  Google Scholar 

  • Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biol 15:613–630

    Article  Google Scholar 

  • Badia-Perpinyà A, Pallares-Barbera M (2006) Spatial distribution of ignitions in Mediterranean peri-urban and rural areas: the case of Catalonia. Int J Wildland Fire 15:187–196

    Article  Google Scholar 

  • Bar Massada A, Radeloff VC, Stewart SI, Hawbaker TJ (2009) Wildfire risk in the wildland–urban interface: a simulation study in northwestern Wisconsin. Forest Ecol Manag 258:1990–1999

    Article  Google Scholar 

  • Bertrand AL, Baird AW (1975) Incendiarims in Southern Forest: a decade of sociological research. In: USDA Forest Service (ed), Southern Forest Experiment Station Bulletin No. 838. Social Science Research Centre at Mississippi University

  • Bonora L, Conese C, Lampin C, Martin P, Martínez J, Molina D, Salas J (2002) Towards methods for investigating on wildland fire causes. Euro-Mediterranean wildland fire laboratory, a “wall-less” laboratory for wildland fire sciences and technologies in the Euro-Mediterranean Region. Deliverable D-05-02

  • Bossard M, Feranec J, Otahel J (2000) Corine land cover technical guide. Addendum 2000. EEA, Copenhagen

  • Bryant C (2008) Understanding bushfire: trends in deliberate vegetation fires in Australia. Technical and background paper series 27, Australian Institute of Criminology, Canberra

  • Bulgarian State Forestry Agency (2008) Bulgarian fire report

  • Calef M, McGuire A, Chapin III F (2009) Human influences on wildfire in Alaska from 1988 through 2005: an analysis of the spatial patterns of human impacts. Earth Interactions, 12, Paper 1

  • Camia A, Durrant Houston T, San-Miguel J (2010) The European fire database: development, structure and implementation In: Viegas DX (ed), Proceedings of the VI international conference on forest fire research, Coimbra

  • Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the upper Midwest, United States. Ecol Appl 11:111–127

    Article  Google Scholar 

  • Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, García-Alegre M, Antonovskiy M, Buchshtaber V, Pivoravov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Global Change Biol 11:1537–1555

    Article  Google Scholar 

  • Catry FX, Damasceno P, Silva JS, Galante M, Moreira F (2007) Spatial distribution patterns of wildfire ignitions in Portugal, Conference wildfire 2007, Seville (Spain)

  • Chou Y, Minnich R, Chase R (1993) Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ Manag 17:129–140

    Article  Google Scholar 

  • Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159

    Article  Google Scholar 

  • Chuvieco E, Justice C (2010) Relations between human factors and global fire activity. In: Chuvieco E, Li J, Yang X (eds) Advances in earth observation of global change. Springer, Dordrecht, pp 187–200

    Chapter  Google Scholar 

  • Chuvieco E, Salas FJ, Carvacho L, Rodríguez-Silva F (1999) Integrated fire risk mapping. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer-Verlag, Berlin, pp 61–84

    Chapter  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58. doi:10.1016/J.ECOLMODEL.2008.11.017

    Article  Google Scholar 

  • Cochrane MA, Laureance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325

    Article  Google Scholar 

  • Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of eastern Amazon: effects on forest structure, biomass and species composition. Biotropica 31:2–16

    Google Scholar 

  • Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: an increasing problem. V International Conference on forest fire research, Portugal

  • Cunningham AA, Martell DL (1976) The use of subjective probability assessments to predict forest fire occurrence. Can J Forest Res 6:348–356

    Article  Google Scholar 

  • De la Riva J, Perez-Cabello F (2005) El factor humano en el riesgo de incendios forestales a escala municipal. Aplicación de técnicas SIG para su modelización. In La ciencia forestal: respuestas para la sostenibilidad. 4 Congreso Forestal Español. Sociedad Española de Ciencias Forestales, Madrid

  • De la Riva J, Perez-Cabello F, Chuvieco E (2006) Wildland fire ignition danger spatial modelling using GIS and satellite data. In: EGU General Assembly—European Geosciences Union. Geophys Res Abstr 8:10321

    Google Scholar 

  • de Vasconcelos MJP, Silva S, Tomé M, Alvim M, Pereira JMC (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens 67(1):73–83

    Google Scholar 

  • Decarnin E, 2002. Etude du risque incendie. Mise en place d’une méthodologie pour la création d’un indice de risque anthropique d’éclosion de feux de forêt. Mémoire de DEA. Structures et Dynamiques Spatiales, Université de Provence

  • Dickson BG, Prather JW, Xu Y, Hampton HM, Aumack EN, Sisk TD (2006) Mapping the probability of large fire occurrence in northern Arizona. USA Landsc Ecol 2:747–761

    Article  Google Scholar 

  • Donoghue LR, Main WA (1985) Some factors influencing wildfire occurrence and measurement of fire prevention effectiveness. J Environ Manag 20(1):87–96

    Google Scholar 

  • Duguy B (1998) Reconstruccion de los cambios en los usos del suelo y en la estructura del paisaje (1956–1994). Interaccion con los incendios. Caso de una zona piloto en la provincia de Alicante. PhD Thesis. Centro Internacional de Altos Estudios Agronomicos Mediterra′neos, Instituto Agronomico Mediterraneo de Zaragoza, Zaragoza, Spain

  • FAO (1986) Wildland fire management terminology. FAO forestry paper 70, Food and Agriculture Organization of the United Nations, Rome

  • FAO (2007) Fire management—global assessment 2006. FAO Forestry Paper 151, Rome, p 156

  • Farina A (1998) Principles and methods in landscape ecology. Chapman and Hall Ltd, Cambridge

    Google Scholar 

  • Ferreira de Almeida AMS, Vilacae-Moura PVS (1992) The relationship of forest fires to agro-forestry and socio-economic parameters in Portugal. Int J Wildland Fire 2:37–40

    Article  Google Scholar 

  • Follin JM (1999) Evaluation des risques naturels anthropiques d’éclosion de feux de forêt à l’Ets des Bouches-du-Rhône. Université de Provence, Mémoire de géographie

    Google Scholar 

  • Franssila M (1959) Kulovaaran ja säätekijöiden välisestä riippuvuudesta (in Finnish, summary in English, “The dependence of forest fire danger on meteorological factors”). Acta Forestalia Fennica 67

  • Fuentes ER, Segura AM, Holmgren M (1994) Are the responses of matorral shrubs different from those in an ecosystem with reputed fire history? In: Moreno JM, Oechel WC (eds) The role of fire in Mediterranean-type ecosystems. Ecological studies 107. Springer-Verlag, New York, pp 16–25

    Chapter  Google Scholar 

  • Furyaev VV (1996) Rol pozharov v protsesse lesoobrazovaniya. The role of fires in the process of forest formation. Novosibirsk. In Russian

  • Geiger R (1948) Neue Unterlagen für eine Waldbrandbekämpfung 2.Teil. Witterungsbedingungen für Großwaldbrände. Mitteilungen des Reichsinstitutes für Forst- und Holzwirtschaft Nr. 5

  • Gill AM, Groves RH, Noble IR (1981) Fire and the Australian Biota. Australian Academy of Science, Canberra

    Google Scholar 

  • Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. J Veg Sci 4:737–744

    Article  Google Scholar 

  • Hardy C (2005) Wildland fire hazard and risk: problems, definitions, and context. Forest Ecol Manag 211:73–82

    Article  Google Scholar 

  • Henderson M, Kalabokidis K, Marmaras E, Konstantinidis P, Marangudakis M (2005) Fire and society: a comparative analysis of wildfire in Greece and the United States. Hum Ecol Rev 12(2):169–182

    Google Scholar 

  • Hill J, Stellmes M, Udelhoven T, Röder A, Sommer S (2008) Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations. Global Planet Change 64:146–157

    Article  Google Scholar 

  • Holdsworth AR, Uhl C (1997) Fire in eastern Amazonian logged rain forest and potential for fire reduction. Ecol Appl 7:713–725

    Article  Google Scholar 

  • Johnson EA (1992) Fire and the vegetation dynamics: studies from the North American boreal forest. Cambridge studies in ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • JRC-IES (2008) Forest fires in Europe. Report no 9/2009. JRC Scientific and Technic Reports, p 88

  • Karpachevskiy M (2004) Forest fires in the Russia taiga. Taïga Rescue Network: 8

  • Keeley JE (1982) Distribution of lightning and man-caused wildfires in California. In: Conrad CE and Oechel WC (eds) Dynamics and management of Mediterranean-type ecosystems. United States Department of Agriculture, Forest Service, PSW-58, pp 431–437

  • Keeley JE, Keeley SC (1988) Chaparral. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, New York, pp 165–207

    Google Scholar 

  • Keeley JE, Fotheringham CJ, Moritz MA (2004) Lessons from the 2003 wildfires in southern California. J For 102:26–31

    Google Scholar 

  • Keränen J (1929) Blitzschlag als zünder der waldbrande im nördlichen Finnland (in German). Acta Forestalia Fennica 34:25

    Google Scholar 

  • Komarek EV (1964) The natural history of lightning. Third annual tall timbers fire ecology conference, Tallahassee, Florida, pp 139–183

  • Koutsias N, Allgöwer B, Conedera M (2002) What is common in wildland fire occurrence in Greece and Switzerland?—Statistics to study fire occurrence pattern. In: Viegas DX (ed) Proceedings of the 4th international conference on forest fire research, Luso, November 18–23, Millpress Science Publishers Rotterdam, Netherlands, pp 14

  • Koutsias N, Arianoutsou M, Kallimanis AS, Mallinis G, Halley JM, Dimopoulos P (2012) Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric Forest Meteorol 156:41–53

    Article  Google Scholar 

  • Kruger FJ, Bigalke RC (1984) Fire in fynbos. In: Tainton NM, Booysen PdeV (eds) Ecological effects of fire in South African ecosystems. Ecological studies 48. Springer-Verlag, New York, pp 67–114

    Chapter  Google Scholar 

  • Lampin C, Jappiot M, Morge D, Borgniet L (2005) Amélioration de la connaissance de l’origine des feux de forêt dans les 15 départements du Sud-Est. DPFM 2003/252 - Proposition no 03-08-22 du 22 août 2003

  • Lampin C, Jappiot M, Morge D, Vennetier M (2006) Statistical and spatial analysis of forest fire ignition points: a study case in South of France. Forest Ecol Manag 234:S12

    Google Scholar 

  • Langhart R, Bachmann A, Allgöwer B (1998) Spatial and temporal patterns of fire occurrence (Canton of Grison, Switzerland). In: Viegas DX (ed) Proceedings of the 3rd international conference on forest fire research/14th conference on fire and forest meteorology, Luso, Portugal, November, 16–20, Vol. 2, pp 2279–2292

  • Larjavaara M (2005) Climate and forest fires in Finland—influence of lightning-caused ignitions and fuel moisture. Dissertationes Forestales 5. Yliopistopaino, Helsinki

  • Larjavaara M, Kuuluvainen T, Tanskanen H, Venäläinen A (2004) Variation in forest fire ignition probability in Finland. Silva Fenn 38(3):253–266

    Google Scholar 

  • Larjavaara M, Pennanen J, Tuomi TJ (2005a) Lightning that ignites forest fires in Finland. Agric Forest Meteorol 132:171–180

    Article  Google Scholar 

  • Larjavaara M, Kuuluvainen T, Rita H (2005b) Spatial distribution of lightning-ignited forest fires in Finland. Forest Ecol Manag 208:177–188

    Article  Google Scholar 

  • Lazaro A, Montiel C (2010). Overview of prescribed burning policies and practices in Europe and other countries. In: Sarde-Silva J, Rego F, Fernandes P and Rigolot E (eds) Towards integrated fire management-outcomes of the European project fire paradox, European Forest Institute Research Report 23, pp 137–150

  • Le Page Y, Oom D, Silva J, Jönsson P, Pereira J (2010) Seasonality of vegetation fires as modified by human action: observing the deviation from eco climatic fire regimes. Global Ecol Biogeogr 19:575–588

    Google Scholar 

  • Lekakis JN (1995) Social and ecological correlates of rural fires in Greece. J Environ Manag 43:41–47

    Article  Google Scholar 

  • Leone V (1999) Los incendios en el Mediodıa Italiano. In: Araque Jimenez E (ed) Incendioshistoricos una aproximacion multidisciplinar. Universidad Internacional de Andalucıa, Seville

    Google Scholar 

  • Leone V, Vita F (1982) Incendi boschivi e marginalita′ economica: il caso della. Puglia Cellulosa e Carta 7(8):41–57

    Google Scholar 

  • Leone V, Koutsias N, Martínez J, Vega-García C, Allgöwer B, Lovreglio R (2003) The human factor in fire danger assessment. In: Chuvieco E (ed) Wildland fire danger estimation and mapping: the role of remote sensing data. World Scientific, Hackensack, pp 143–196

    Chapter  Google Scholar 

  • Loboda TV (2009) Modelling fire danger in data-poor regions: a case study from the Russian Far East. Int J Wildland Fire 18:19–35

    Article  Google Scholar 

  • Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2006) New tools for the analysis of fire causes and their motivations: the Delphi technique. Forest Ecol Manag 234(1):18–33

    Article  Google Scholar 

  • Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2010) Wildfire cause analysis: four case-studies in southern Italy. iForest 3:8–15

    Article  Google Scholar 

  • Maingi JK, Henry MC (2007) Factor influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int J Wildland Fire 16:23–33

    Article  Google Scholar 

  • Mangiavillano A (2004) De l’éclosion du phénomène à l’émergence d’incendie: utilisation combine de l’analyse spatiale et de la physique du feu pour localiser les espaces émetteurs. Mémoire de DEA de Géographie, Université d’Avignon

  • Martínez J, Vega-García C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252

    Article  Google Scholar 

  • Maselli R, Botai L, Conese C (1996) Evaluation of forest fire risk by the analysis of environmental data and TM images. Int J Remote Sens 17(7):1417–1423

    Article  Google Scholar 

  • Miranda BR, Sturtevant BR, Stewart SI, Hammer RB (2012) Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. Int J Wildland Fire 21:141–154

    Article  Google Scholar 

  • Missbach K (1990) Zur Auswertung der Waldbrandstatistik der DDR. Forstwirtschaft Berlin 40:3

    Google Scholar 

  • Mollicone D, Eva HD, Achard F (2006) Human role in Russian wildfires. Nature 440:436–437

    Article  CAS  Google Scholar 

  • Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot F, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape-wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–2402

    Article  Google Scholar 

  • Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 9:199–206

    Article  Google Scholar 

  • Noga LG, Tikhonov VV (1979) O vozniknovenii lesnykh pozharov ot groz. [On the occurrence of forest fires from lightning.] Lesnoe khozyaistvo 6:58–59. In Russian

  • NWCG (2006) Glossary of wildland fire terminology. National Wildfire Coordinating Group, PMS 205, Boise, Idaho

  • Odintsov DI (1995) Okhrana lesov ot ognya—zadacha obshchaya. [Forest protection against fire as a common task.] Lesnoe khozyaistvo 2:28–31. In Russian

  • Padilla M, Vega-García C (2011) On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int J Wildland Fire 20:46–58

    Google Scholar 

  • Pereira JMC, Carreiras JMB, De Vasconcelos PMJ (1998) Exploratory data analysis of the spatial distribution of wildfires in Portugal, 1980–1989. Geogr Syst 5(4):355–390

    Google Scholar 

  • Pew KL, Larsen CPS (2001) GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rainforest of Vancouver Island, Canada. Forest Ecol Manag 140:1–18

    Article  Google Scholar 

  • Prestemon JP, Butry DT (2005) Time to burn: modelling wildland arson as an autoregressive crime function. Am J Agric Econ 87:756–770

    Article  Google Scholar 

  • Pyne SJ (2001) Fire in America. Princeton University Press, Princeton

    Google Scholar 

  • Richardson DM, van Wilgen BW (1992) Ecosystem, community and species response to fire in mountain Fymbos: conclusions from Swartboskloof experiment. In: van Wilgen BW, Richardson DM, Kruger FJ, van Hensbergen HJ (eds) Fire in South African mountain Fynbos, ecological studies 93. Springer-Verlag, Berlin, pp 273–284

    Chapter  Google Scholar 

  • Ricotta C, Guglietta D, Migliozzi A (2012) No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy). Natural Hazards Earth Syst Sci 12:1333–1336. doi:10.5194/nhess-12-1333-2012

    Article  Google Scholar 

  • Romero-Calcerrada R, Perry GLW (2004) The role of land abandonment in landscape dynamics in the SPA ‘Encinares del río Alberche y Cofio, Central Spain, 1984–1999. Landsc Urban Plan 66:217–232

    Google Scholar 

  • Romero-Calcerrada R, Novillo J, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc Ecol 23:341–354

    Article  Google Scholar 

  • Ruffner CM, Abrams MD (1998) Lightning strikes and resultant fires from archival (1912–1917) and current (1960–1997) information in Pennsylvania. J Torrey Bot Soc 125:249–252. doi:10.2307/2997223

    Article  Google Scholar 

  • Russell-Smith J, Ryan PG, Durieu R (1997) A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J Appl Ecol 34:748–766

    Article  Google Scholar 

  • San-Miguel-Ayanz J, Camia A (2010) Forest fires. In: Mapping the impacts of natural hazards and technological accidents in Europe: an overview of the last decade. EEA Technical report No 13/2010, Publications Office of the European Union, Luxembourg, pp 49–55

  • San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A, Strobl P, Liberta G, Giovando C, Boca R, Sedano F, Kempeneers P, McInerney D, Withmore C, Santos de Oliveira S, Rodrigues M, Durrant T, Corti P, Oehler F, Vilar L, Amatulli G, (2012) Comprehensive monitoring of wildfires in Europe: the European forest fire information system (EFFIS). In: Tiefenbacher J (ed) Approaches to managing disaster—assessing hazards, emergencies and disaster impacts, InTech, doi:10.5772/1112

  • Santos De Oliveira S, Camia A, San-Miguel-Ayanz J (2009) First steps towards a long term forest fire risk of Europe. In: Chuvieco E, Lasaponara R (eds) Proceedings of the VII international EARSeL workshop—advances on remote sensing and GIS applications in forest fire management. Potenza (Italy), Il Segno, pp 79–83

    Google Scholar 

  • Sebastián-López A, Salvador-Civil R, Gonzalo-Jimenez J, San-Miguel-Ayanz J (2008) Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur J Forest Res 127:149–163

    Article  Google Scholar 

  • Sergienko VN (1996) Sokhranim li nashi lesa? [Will we be able to preserve our forest?]. Lesnoe khozyaistvo 3:5–6 In Russian

    Google Scholar 

  • Sergienko VN, 19 Sergienko VN (1999) Borba s lesnymi pozharami: problemy I zadachi. [Fight against forest fires: problems and tasks.] Lesnoe khozyaistvo 4:47–51. In Russian

  • Shlisky A, Waugh J, Gonzalez P, Gonzalez M, Manta M, Santoso H, Alvarado E, Ainuddin Nuruddin A, Rodríguez-Trejo DA, Swaty R, Schmidt D, Kaufmann M, Myers R, Alencar A, Kearns F, Johnson D, Smith J, Zollner D, Fulks W (2007) Fire, ecosystems and people: threats and strategies for global biodiversity conservation. The Nature Conservancy, Arlington

    Google Scholar 

  • Sofronov MA, Vakurov AD (1981) Ogon v lesu. [Fire in the forest]. Nauka, Novosibirsk In Russian

    Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108: FFR5-1-FFR5-12

  • Sturtevand BR, Cleland DT (2007) Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int J Wildland Fire 16:398–413

    Article  Google Scholar 

  • Syphard AD, Clarke KC, Franklin J (2007a) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–445

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007b) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17:602–613

    Article  Google Scholar 

  • Tabara D, Sauri D, Cerdan R (2003) Forest fire risk management and public participation in changing socio-environmental conditions: a case study in a Mediterranean region. Risk Anal 23:249–260

    Article  Google Scholar 

  • Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. Stoch Environ Res Risk Assess. doi:10.1007/s00477-011-0461-0

    Google Scholar 

  • Tuček J, Majlingová A (2009) Forest fire vulnerability analysis, 219-230. In: Strelcova K, et al. (eds) Bioclimatology and natural hazards. doi:10.1007/978-8876-6-19

  • Tuomi TJ (2002) Lightning observations in Finland. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Tuomi TJ (2004) Lightning observations in Finland. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196

    Article  Google Scholar 

  • Vasilakos C, Kalabokidis K, Hatzopoulos J, Kallos G, Matsinos J (2007) Integrating new methods and tools in fire danger rating. Int J Wildland Fire 16(3):306–316

    Article  Google Scholar 

  • Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos J (2008) Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Natural Hazards, pp 1–19

  • Vazquez A, Moreno JM (1993) Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landsc Urban Plan 24:129–142

    Article  Google Scholar 

  • Vazquez A, Moreno JM (1998) Patterns of lightning-, and people-caused fires in Peninsular Spain. Int J Wildland Fire 812:103–115

    Article  Google Scholar 

  • Vazquez A, Moreno JM (2001) Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecol Manag 147:55–65

    Article  Google Scholar 

  • Vega-García C, Woodard P, Lee B (1993) Geographic and temporal factors that seem to explain human-caused fire occurrence in Whitecourt Forest, Alberta. In: Proceedings of symposium on GIS’93 international. Vancouver 1:115–119

  • Vega-García C, Woodard T, Adamowicz WL, Lee B (1995) A logit model for predicting the daily occurrence of human caused forest fires. Int J Wildland Fire 5(2):101–111

    Article  Google Scholar 

  • Velez R (2000) La prevencion. In: García-Brage A (ed) La defensa contra incendios forestales fundamentos y experiencias. McGraw-Hill/Interamericana de Espana, Madrid

    Google Scholar 

  • Vigilante T, Bowman DMJS, Fisher R, Russell-Smith J, Yates C (2004) Contemporary landscape burning patterns in the far North Kimberley region of north-west Australia: human influences and environmental determinants. J Biogeogr 31:1317–1333

    Article  Google Scholar 

  • Weck J (1950) Waldbrand, seine Vorbeugung und Bekämpfung. Brandschutz-Fachbuchreihe 19, W. Kohlhammer Verlag

  • Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest Sci 53:1–15

    CAS  Google Scholar 

  • Zakharov AN, Stolyrchuk AV (1977) Pozhary ot groz v lesakh Tyumenskoy oblasti. [Fires caused by thunderstorms in forest of Tyumen Oblast.]. Lesnoe khozyaistvo 7:74–75 In Russian

    Google Scholar 

  • Zhai Y, Munn IA, Evans DL (2003) Modelling forest fire probabilities in the south central United States using FIA data. South J Appl For 27:11–17

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Joint Research Centre of the European Commission, Service Contract no 384 340 “Determination of forest fire causes and harmonization of methods for reporting them”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Ganteaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganteaume, A., Camia, A., Jappiot, M. et al. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environmental Management 51, 651–662 (2013). https://doi.org/10.1007/s00267-012-9961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-012-9961-z

Keywords

Navigation