Skip to main content

Advertisement

Log in

GIS-based Probability Assessment of Natural Hazards in Forested Landscapes of Central and South-Eastern Europe

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We assessed the probability of three major natural hazards—windthrow, drought, and forest fire—for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht A, Schindler D, Grebhan K, Kohnle U, Mayer H (2009) Sturmaktiviät über der nordatlantisch-europäischen Region vor dem Hintergrund des Klimawandels—eine Literaturübersicht. Allgemeine Forst und Jagdzeitung 180(5–6):109–118

    Google Scholar 

  • Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007) Europe. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 541–580

    Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change 9(1):5–23

    Article  Google Scholar 

  • Beier CM, Patterson TM, Stuart Chapin F III (2008) Ecosystem services and emergent vulnerability in managed ecosystems: a geospatial decision-support tool. Ecosystems 11:923–938

    Article  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responds, adaption processes and long-term consequences. Annals of Forest Science 63:625–644

    Article  Google Scholar 

  • Carmel Y, Paz S, Jahashan F, Shoshany M (2009) Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management 257:370–377

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2009) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modeling 221:46–58

    Article  Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van Den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Cucchi V, Meredieu C, Stokes A, de Coligny F, Suarez J, Gardiner BA (2005) Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 213:184–196

    Article  Google Scholar 

  • De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41(3):393–408

    Article  Google Scholar 

  • De Vries W, Reinds GJ, Klap JM, Van Leeuwen EP, Erisman JW (2000) Effects of environmental stress on forest crown conditions in Europe. Part III: estimation of critical deposition and concentration levels and their exceedances. Water, Air, Soil Pollution 119:363–386

    Article  Google Scholar 

  • Desprez-Loustau ML, Marcais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63:597–612

    Article  Google Scholar 

  • Dise NB, Rothwell JJ, Gauci V, van der Salm C, de Vries W (2009) Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Science of the Total Environment 407:1798–1808

    Article  CAS  Google Scholar 

  • DMEER (2003) Digital Map of European Ecological Regions, http://dataservice.eea.europa.eu/atlas/viewdata/viewpub.asp?id=7. Accessed October 13, 2009

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research 124:319–333

    Article  Google Scholar 

  • Dorland C, Tol RSJ, Palutikof JP (1999) Vulnerability of The Netherlands and Northwest Europe to storm damage under climate change, a model approach based on storm damage in the Netherlands. Climatic Change 43:513–535

    Article  Google Scholar 

  • Dubrovsky M, Svoboda MD, Trnka M, Hayes MJ, Wilhite DA, Zalud Z, Hlavinka P (2008) Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology 96:155–171

    Article  Google Scholar 

  • EEA (European Environmental Agency) (2008a) European forests—ecosystem conditions and sustainable use. EEA Report No 3/2008, 1-105

  • EEA (European Environmental Agency) (2008b) Environmental risk assessment: approaches, experiences and information sources. http://www.eea.europa.eu/publications/GH-07-97-595-EN-C2/riskindex.html. Accessed April 4, 2009

  • Ekström M, Jones PD, Fowler HJ, Lenderrink G, Buishand TA, Conway D (2007) Regional climate model data used within SWURVE project 1: projected changes in seasonal patterns and estimation of PET. Hydrology and Earth System Sciences 11(3):1069–1083

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56, http://www.fao.org/docrep/X0490E/X0490E00.htm#Contents. Accessed April 4, 2009

  • FCS (Forestry Commission Scotland) (2008) Impacts of climate change on forests and forestry in Scotland, 40 pp

  • Fischer R, Mues V, Ulrich E, Becher G, Lorenz M (2007) Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Applied Geochemistry 22:1129–1139

    Article  CAS  Google Scholar 

  • Fischer B, Goldberg V, Bernhofer C (2009) Der Einfluss klimabedingt veränderter Bestandesstruktur auf die Temperaturund Verdunstungsverhältnisse in der Dübener Heide/Sachsen. Forest Ecology, Landscape Research and Nature Conservation 8:53–62

    Google Scholar 

  • ICP Forests (2008) The condition of forests in Europe, 2007. Executive Report, 36 pp

  • Franke J, Goldberg V, Mellentin U, Bernhofer C (2006) Risiken des regionalen Klimawandels in Sachsen, Sachsen-Anhalt und Thüringen. Wissenschaftliche Zeitschrift Technische Universität Dresden 55:97–104

    Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change 79:79–102

    Article  CAS  Google Scholar 

  • Fürst C, Vacik H, Lorz C, Makeschin F, Podrazky V (2007) Meeting the challenges of process-oriented forest management—editorial. Forest Ecology and Management 248:1–5

    Article  Google Scholar 

  • Gardiner B (1994) Wind and wind forces in a plantation of spruce forest. Boundary Layer Meteorology 67:161–186

    Article  Google Scholar 

  • Gardiner B, Suárez J, Achim A, Hale S, Nicoll B (2006) ForestGALES—a PC-based wind risk model for British Forests, User’s Guide Version 2.1

  • EC (Die Kommission der Europäischen Gemeinschaften) (2008) Arbeitspapier der Kommission—Regionen 2020—Bewertung der künftigen Herausforderungen für die EU-Regionen, 24 pp+ appendix

  • Geßler A, Kreuzwieser CJ, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org. Accessed April 4, 2009

  • Jurjevic P, Vuletic D, Gracan J, Seletkovic G (2008) Forest fires in the Republic of Croatia (1992–2007). In: Proceedings of the 1st international conference on remote sensing techniques in disaster management and emergency response in the mediterranean region. Zadar, Croatia, 22–24 September 2008

  • Kay AL, Davies HN (2008) Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. Journal of Hydrology 358:221–239

    Article  Google Scholar 

  • Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Reinund Mischbestand. Allgemeine Forst und Jagdzeitung 136:149–161 and 173–189

  • Klap JM, Oude Voshaar JH, De Vries W, Erisman JW (2000) Effects of environmental stress of forest crown condition in Europe- Part IV: Statistical analysis of relationships. Water, Air, Soil Pollution 119:387–420

    Article  CAS  Google Scholar 

  • Koetz B, Morsdorf F, van der Linden S, Curt T, Allgöwer B (2008) Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management 256:263–271

    Article  Google Scholar 

  • Krist F, Sapio F, Tkacz B (2007) Mapping risk from forest insects and diseases. FHTET 2007-6. US Department of Agriculture Forest Service, Forest health protection, Forest Health Technology Enterprise Team, Fort Collins, CO, pp 115

  • Kurz WA, Apps MJ, Stocks BJ, Volney WJA (1995) Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests. In: Woodwell GM, Mackenzie FT (eds) Biotic feedbacks in the global climatic system. Oxford University Press, pp 119–133

  • La Porta N, Capretti P, Thomsen IM, Kasanen R, Hietala AM, Von Weissenberg K (2008) Forest Pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology 30(2):177–195

    Google Scholar 

  • Lagergren F, Lankreijer H, Kucera J, Cienciala E, Mölder M, Lindroth A (2008) Thinning effects on pine-spruce forest transpiration in central Sweden. Forest Ecology and Management 255(7):2312–2323

    Article  Google Scholar 

  • Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbeständen aus Fichte und Buche als Grundlage für waldbauliche Entscheidungen. Forstarchiv 68:167–179

    Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70:117–135

    Article  CAS  Google Scholar 

  • Martinez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. Environmental Management 90:1241–1252

    Article  Google Scholar 

  • MEA (Millenium Ecosystem Assessment) (2005a) Forest and woodland systems, Chapter 21, http://www.millenniumassessment.org/documents/document.290.aspx.pdf. Accessed April 4, 2009

  • MEA (Millennium Ecosystem Assessment) (2005b) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, p 155

    Google Scholar 

  • Müller J (2007) Auswirkung von trockenheit auf den waldzustand—Ansätze zur bewertung der trockenheitsgefährdung von waldstandorten. 12. Gumpensteiner Lysimetertagung 2007. www.raumberg-gumpenstein.at/cms/index.php?option=com_docman&task=doc_download&gid=2191&Itemid=53. Accessed April 4, 2009

  • Munich ReGroup (2009a) World Map of Natural Hazards, version 2009, pp 6

  • Munich ReGroup (2009b) Topics Geo, natural catastrophes 2008, analyses, assessments, positions, pp 42

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. http://www.cru.uea.ac.uk/cru/data/hrg.htm. Accessed April 4, 2009

  • Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. Forest Ecology and Management 199:165–173

    Article  Google Scholar 

  • Nopp U, Netherer S, Führer E (2000) Bestimmungsschlüssel für die Schadensprädisposition fichtenreicher Bestände gegenüber verschiedenen biotischen und abiotischen Schadfaktoren. In: Müller F (Hrsg) Berichte der Forstlichen Bundesversuchsanstalt Wien, vol 111, pp 85–93

  • Novotný R, Lachmanová Z, Šrámek V, Vortelová L (2008) Air pollution load and stand nutrition in the Forest District Jablunkov, part Nýdek. Journal of Forest Science 54:49–54

    Google Scholar 

  • Ogden AE, Innes JL (2008) Climate change adaptation and regional forest planning in southern Yukon, Canada. Mitigation and Adaptation Strategies for Global Change 13:833–861

    Article  Google Scholar 

  • Patterson TM, Coelho DL (2009) Ecosystem services: Foundations, opportunities, and challenges for the forest products sector. Forest Ecology and Management 257:1637–1646

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H (1999) Model computations of the impact of climatic change on the windthrow risk of trees. Climatic Change 41:17–39

    Article  Google Scholar 

  • Klopcic M., Poljanec, A., Gartner, A., Boncina, A., 2009. Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests in the Julian Alps. Ecoscience 16. doi: 10.2980/16-1-3181

  • Potocic N, Seletkovic I, Ugarkovic D, Jazbec A, Mikac S (2008) The influence of climate properties on crown condition of Common beech (Fagus sylvatica L.) and Silver fir (Abies alba Mill.) on Velebit. Periodicum Biologorium 110(2):145–150

    Google Scholar 

  • Quine CP (2000) Estimation of mean wind climate and probability of strong winds for wind risk assessment. Forestry 73(3):247–258

    Article  Google Scholar 

  • Rose L, Leuschner C, Köckemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research 128(4):335–343

    Article  Google Scholar 

  • Roualt G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzee N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science 63:613–624

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Ewert F, Glendining M, Gracia MC, de la Vega-Leinert AC, Erhard M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  Google Scholar 

  • Schultz J (2005) The Ecozones of the World, 2nd edn. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research 125:291–302

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. Forest Ecology and Management 256:209–220

    Article  Google Scholar 

  • Seidling W (2007) Signals of summer drought in crown condition data from the German Level I network. European Journal of Forest Research 126:529–544

    Article  Google Scholar 

  • Spellmann H, Sutmöller J, Meesenburg H (2007) Risikovorsorge im Zeichen des Klimawandels: Vorläufige Empfehlungen der NW-FVA am Beispiel des Fichtenanbaus. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge 23:1246–1249

    Google Scholar 

  • Spiecker H, Hansen J, Hasenauer H, Klimo E, Skovsgaard JP, Sterba H, Teuffel von K.v (2004) Norway spruce conversion in Europe: an open question? In: Spiecker H, Hansen J, Kimo E, Skovsgaard JP, Sterba, Teuffel K von (eds) Norway spruce conversion: options and consequences, vol 18. Brill Academic Publishers, Leiden, Boston, Köln, pp 2–4

  • Stogsdill WR Jr, Wittwer RF, Hennessey TC, Dougherty PM (1992) Water use in thinned loblolly pine plantations. Forest Ecology and Management 50(3–4):233–245

    Article  Google Scholar 

  • Teuffel K, Heinrich B, Baumgarten M (2004) Present distribution of secondary Norway spruce in Europe. In: Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (eds) Norway spruce conversion—options and consequences. EFI Research Report 18, Brill, Leiden, pp 63–96

    Google Scholar 

  • Thonicke K, Cramer W (2006) Long-term trends in vegetation dynamics and forest fires in Brandenburg (Germany) under a changing climate. Natural Hazards 38(1–2):283–300

    Article  Google Scholar 

  • Tkacz B, Moody B, Villa Castillo J, Fenn ME (2008) Forest health conditions in North America. Environmental Pollution 155:409–425

    Article  CAS  Google Scholar 

  • Trnka M, Eitzinger J, Hlavinka P, Dubrovsky M, Semeradova D, Stepanek P, Thaler S, Zalud Z, Mozny M, Formayer H (2009) Climate driven changes of production regions in Central Europe. Plant Soil Environment 55:257–266

    Google Scholar 

  • Weischet W, Endlicher W (2000) Regionale Klimatologie Teil 2: Die Alte Welt, Teubner, Stuttgart, Leipzig

  • Wintle BA, Lindenmayer DB (2008) Adaptive risk management for certifiably sustainable forestry. Forest Ecology and Management 256:1311–1319

    Article  Google Scholar 

  • Zeng H, Talkkari A, Peltola H, Kellomäki S (2007) A GIS-based decision support system for risk assessment of wind damage in forest management. Environmental Modelling & Software 22:1240–1249

    Article  Google Scholar 

Download references

Acknowledgments

Our study was part of the project ReForMan (Regional forest management support needs; www.reforman.de) within the SEE-ERA.net networking program. The project was funded by the participating countries. UN/ECE ICP Forests provided the data on tree crown defoliation from the European Level I plot network. Finally, we would like to thank three anonymous reviewers for their valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lorz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorz, C., Fürst, C., Galic, Z. et al. GIS-based Probability Assessment of Natural Hazards in Forested Landscapes of Central and South-Eastern Europe. Environmental Management 46, 920–930 (2010). https://doi.org/10.1007/s00267-010-9508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-010-9508-0

Keywords

Navigation