Skip to main content

Advertisement

Log in

Regional Differences in the Carbon Source-Sink Potential of Natural Vegetation in the U.S.A.

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We simulated the variability in natural ecosystem carbon storage under historical conditions (1895–1994) in six regions of the conterminous USA as delineated for the USGCRP National Assessment (2001). The largest simulated variations in carbon fluxes occurred in the Midwest, where large fire events (1937, 1988) decreased vegetation biomass and soil carbon pools. The Southeast showed decadal-type trends and alternated between a carbon source (1920s, 1940s, 1970s) and a sink (1910s, 1930s, 1950s) in response to climate variations. The drought of the 1930s was most obvious in the creation of a large carbon source in the Midwest and the Great Plains, depleting soil carbon reserves. The Northeast shows the smallest amplitudes in the variation of its carbon stocks. Western regions release large annual carbon fluxes from their naturally fire-prone grassland- and shrubland-dominated areas, which respond quickly to chronic fire disturbance, thus reducing temporal variations in carbon stocks. However, their carbon dynamics reflect the impacts of prolonged drought periods as well as regional increases in rainfall from ocean-atmosphere climate regime shifts, most evident in the 1970s. Projections into the future by using the warm CGCM1 climate scenario show the Northeast becoming mostly a carbon source, the Southeast becoming the largest carbon source in the 21st century, and the two western-most regions becoming carbon sinks in the second half of the 21st century. Similar if more moderate trends are observed by using the more moderately warm HADCM2SUL scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 2.2
Figure 3
Figure 3.2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J. Aber R. Neilson S. McNulty J. Lenihan D. Bachelet R. Drapek (2001) ArticleTitleForest processes and global environmental change: predicting the effects of individual and multiple stressors. Bioscience 51 735–751

    Google Scholar 

  2. D. Bachelet J. Lenihan C. Daly R. Neilson (2000) ArticleTitleInteractions between fire, grazing and climate change at Wind Cave National Park, SD. Ecological Modelling 134 229–224 Occurrence Handle10.1016/S0304-3800(00)00343-4 Occurrence Handle1:CAS:528:DC%2BD3cXntFyis70%3D

    Article  CAS  Google Scholar 

  3. Bachelet, D., Lenihan, J., Daly, C., Neilson, R., Ojima, D., Parton, W. (2001a) MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. U.S.D.A. Forest Service, Pacific Northwest Station. General Technical Report PNW-GTR-508.

  4. D. Bachelet R. P. Neilson J. M. Lenihan R. J. Drapek (2001b) ArticleTitleClimate change effects on vegetation distribution and carbon budget in the U.S. Ecosystems 4 164–185 Occurrence Handle10.1007/s10021-001-0002-7 Occurrence Handle1:CAS:528:DC%2BD3MXltVKksL4%3D

    Article  CAS  Google Scholar 

  5. D. Bachelet R. P. Neilson T. Hickler R. J. Drapek J. M. Lenihan M. T. Sykes B. Smith S. Sitch K. Thonicke (2003) ArticleTitleSimulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles 17 1045 Occurrence Handle10.1029/2001GB001508

    Article  Google Scholar 

  6. Birdsey, R.A., Heath, L.S. (1995) “Carbon changes in U.S. Forests.” In: Joyce, L.A. (Eds), Productivity of America’s forests and climate change, USDA-FS GTR RM-271, pp 56–70

  7. R. A. Birdsey A. J. Plantinga L. S. Heath (1993) ArticleTitlePast and prospective carbon storage in United States forests. Forest Ecology and Management 58 33–40 Occurrence Handle10.1016/0378-1127(93)90129-B

    Article  Google Scholar 

  8. P. Bousquet P. Peylin P. Ciais C. Le Quere P. Friedlingstein P. P. Tans (2000) ArticleTitleRegional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290 1342–1346 Occurrence Handle10.1126/science.290.5495.1342 Occurrence Handle11082059

    Article  PubMed  Google Scholar 

  9. S. L. Brown P. E. Schroeder (1999) ArticleTitleSpatial patterns of aboveground production and mortality of woody biomass for eastern U.S. Forests. Ecological Applications 9 968–980

    Google Scholar 

  10. C. Daly D. Bachelet J. M. Lenihan R. P. Neilson W. Parton D. Ojima (2000) ArticleTitleDynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10 449–469

    Google Scholar 

  11. T. L. Delworth R. J. Stouffer K. W. Dixon M. J. Spelman T. R. Knutson A. J. Broccoli P. J. Kushner R. T. Wetherald (2002) ArticleTitleReview of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dynamics 19 555–574 Occurrence Handle10.1007/s00382-002-0249-5

    Article  Google Scholar 

  12. D. R. Easterling G. A. Meehl C. Parmesan S. A. Changnon T. R. Karl L. O. Mearns (2000) ArticleTitleClimate extremes: observations, modeling, and impacts. Science 289 2068–2074 Occurrence Handle10.1126/science.289.5487.2068 Occurrence Handle1:CAS:528:DC%2BD3cXmvVCms7g%3D Occurrence Handle11000103

    Article  CAS  PubMed  Google Scholar 

  13. P. Falkowski R. J. Scholes E. Boyle J. Candell D. Canfield J. Elser N. Gruber K. Hibbard P. Hogberg S. Linder F. T. Mackenzie B. Moore III T. Pedersen Y. Rosenthal S. Seitzinger V. Smetacek W. Steffen (2000) ArticleTitleThe global carbon cycle: a test of our knowledge of earth as a system. Science 290 291–296 Occurrence Handle10.1126/science.290.5490.291 Occurrence Handle1:CAS:528:DC%2BD3cXnsVGisrg%3D Occurrence Handle11030643

    Article  CAS  PubMed  Google Scholar 

  14. S. Fan M. Gloor J. Mahlman S. Pacala J. Sarmiento T. Takahashi P. Tans (1998) ArticleTitleA large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282 442–446 Occurrence Handle10.1126/science.282.5388.442 Occurrence Handle1:CAS:528:DyaK1cXmslaqu7o%3D Occurrence Handle9774264

    Article  CAS  PubMed  Google Scholar 

  15. J. A. Hicke G. P. Asner J. T. Randerson C. Tucker S. Los R. Birdsey J. C. Jenkins C. Field E. Holland (2002) ArticleTitleSatellite-derived increases in net primary productivity across North America, 1982–1998 Geophysical Research Letters 29 10 Occurrence Handle10.1029/2001GL013578

    Article  Google Scholar 

  16. R. Houghton J. Hackler (2000) ArticleTitleChanges in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry Global Ecology and Biogeography 9 125–144 Occurrence Handle10.1046/j.1365-2699.2000.00166.x

    Article  Google Scholar 

  17. R. A. Houghton J. L. Hacker K. T. Lawrence (1999) ArticleTitleThe U.S. Carbon Budget: contributions from land-use change. Science 285 574–578 Occurrence Handle10.1126/science.285.5427.574 Occurrence Handle1:CAS:528:DyaK1MXltVSjsbw%3D Occurrence Handle10417385

    Article  CAS  PubMed  Google Scholar 

  18. T. R. Karl (1998) Regional trends and variations of temperature and precipitation. R. T. Watson M. C. Zinyowera R. H. Moss D. J. Dokken (Eds) The regional impacts of climate change: an assessment of vulnerability Cambridge University Press Cambridge 412–425

    Google Scholar 

  19. A. Kattenberg F. Giorgi H. Grassl G. Meehl J. Mitchell R. Stouffer T. Tokioka A. Weaver T. Wigley (1996) Climate models: projections of future climate. J. Houghton L. Meira Filho B. Callander N. Harris A. Kattenberg K. Maskell (Eds) Climate change 1995: the science of climate change. Contribution to Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Cambridge University Press Cambridge, U.K. 285–357

    Google Scholar 

  20. R. Keane C. Hardy K Ryan (1997) ArticleTitleSimulating effects of fire on gaseous emissions and atmospheric carbon fluxes from coniferous forest landscapes. World Resource Review 9 177–205

    Google Scholar 

  21. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data, in D.H. Peterson (ed.) Aspects of climate variability in the Pacific and the Western Americas. Geophysical Monographs 55:165–236.

  22. Kittel, T. G. F., Rosenbloom, N. A., Kaufman, C, Royle, .J. A., Daly, C., Fisher, H. H., Gibson, W. P., Aulenbach, S., McKeown, R., Schimel, D. S., VEMAP2 Participants. 2000. VEMAP Phase 2 Historical and Future Scenario Climate Database, available on line at http://www.cgd.ucar.edu/vemap for the VEMAP Data Group, National Center for Atmospheric Research, Boulder, Colorado.

  23. Kittel, T. G. F., Rosenbloom, N. A., Royle, A., Daly, C., Gibson, W. P., Fisher, H. H., Thornton, P., Yates, D. N., Aulenbach, S., Kaufman, C., McKeown, R. , Bachelet, D., Schimel., D.S, VEMAP2 Participants. The VEMAP phase 2 bioclimatic database. I. A gridded historical (20th century) climate dataset for modeling ecosystem dynamics across the conterminous United States. Submitted to Climate Research 2003

  24. J. M. Lenihan C. Daly D. Bachelet R. P. Neilson (1997) ArticleTitleSimulating broad-scale fire severity in a dynamic global vegetation model Northwest Science 72 91–103

    Google Scholar 

  25. N. J. Mantua S. R. Hare (2002) ArticleTitleThe Pacific decadal oscillation. Journal of Oceanography 58 35–44 Occurrence Handle10.1023/A:1015820616384

    Article  Google Scholar 

  26. NAST (National Assessment Synthesis Team) (2000) Climate change impacts on the United States. The potential consequences of climate variability and change. Available at: http://www.usgcrp.gov/usgcrp/nacc/default.htm, and Cambridge University Press

  27. R Neilson (1995) ArticleTitleA model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5 362–385

    Google Scholar 

  28. N Nicholls G. V. Gruza J. Jouzel T. R. Karl L. A. Ogallo D. E. Parker (1996) . J. T. Houghton L. G. Meira Filho B. A. Callander N. Harris A. Kattenberg K. Maskell (Eds) Climate change 1995: the science of climate change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel of Climate Change Cambridge University Press Cambridge, UK 133–192

    Google Scholar 

  29. S. W. Pacala G. C. Hurtt D. Baker P. Peylin R. A. Houghton R. A. Birdsey L. Heath E. T. Sundquist R. F. Stallard P. Ciais P. Moorcroft J. P. Caspersen E. Shevliakova B. Moore G. Kohlmaier E. Holland M. Gloor M. E. Harmon S. -M. Fan J. L. Sarmiento C. L. Goodale D. Schimel C. B. Field (2001) ArticleTitleConsistent land- and atmosphere-based U.S. carbon sink estimates. Science 292 2316–2320 Occurrence Handle10.1126/science.1057320 Occurrence Handle1:STN:280:DC%2BD3MzmtlWmsQ%3D%3D Occurrence Handle11423659

    Article  CAS  PubMed  Google Scholar 

  30. W. J. Parton D. S. Schimel C. V. Cole D. Ojima (1987) ArticleTitleAnalysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Science Society of America 51 1173–1179 Occurrence Handle1:CAS:528:DyaL2sXmtlGnsbw%3D

    CAS  Google Scholar 

  31. Parton, W., Schimel, D. Ojima, D., Cole, C. 1994. A general study model for soil organic model dynamics, sensitivity to litter chemistry, texture, and management. Pages 147–167 in Soil Science Society of America Special Publication 39

  32. D. Peterson K. Ryan (1986) ArticleTitleModeling postfire conifer mortality for long-range planning, Environmental Management 10 797–808

    Google Scholar 

  33. C. S. Potter S. A. Klooster (1999) ArticleTitleDetecting a terrestrial biosphere sink for carbon dioxide: interannual ecosystem modeling for the mid-1980s. Climatic Change 42 489–503 Occurrence Handle10.1023/A:1005449017059 Occurrence Handle1:CAS:528:DyaK1MXmtFGitL0%3D

    Article  CAS  Google Scholar 

  34. N. Ramankutty J. A. Foley J. Norman K. McSweeney (2002) ArticleTitleThe global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography 11 377–392 Occurrence Handle10.1046/j.1466-822x.2002.00294.x

    Article  Google Scholar 

  35. Rothermel, R. 1972. A mathematical model for fire spread predictions in wildland fuels. USDA Forest Service Research Paper INT-115, 40 pp.

  36. D. Schimel J. Melillo H. Tian A. D. McGuire D. Kicklighter T. Kittel N. Rosenbloom S. Running P. Thornton D. Ojima W. Parton R. Kelly M. Sykes R. Neilson B. Rizzo (2000) ArticleTitleContribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287 2004–2006 Occurrence Handle10.1126/science.287.5460.2004 Occurrence Handle1:CAS:528:DC%2BD3cXhvF2ru78%3D Occurrence Handle10720324

    Article  CAS  PubMed  Google Scholar 

  37. D. Strauss L. Bednar R. Mess (1989) ArticleTitleDo one percent of forest fires cause ninety-nine percent of the damage? Forest Science 35 319–328

    Google Scholar 

  38. T. W. Swetnam J. L. Betancourt (1998) ArticleTitleMesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11 3218–3147 Occurrence Handle10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2

    Article  Google Scholar 

  39. D. P. Turner G. J. Koerper M. E. Harmon J. Lee (1995) ArticleTitleA carbon budget for forests of the conterminous United States. Ecological Applications 5 421–436

    Google Scholar 

  40. M. Turner W. Romme (1994) ArticleTitleLandscape dynamics in crown fire ecosystems. Landscape Ecology 9 59–77

    Google Scholar 

  41. C. E. van Wagner (1993) ArticleTitlePrediction of crown fire behavior in two stands of jack pine. Canadian Journal of Forest Research 23 442–449

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by the U.S. Department of Energy, National Institute for Global Environmental Change, Great Plains Region (LWT 62-123-06509); the U.S. Geological Survey, Biological Resources Division, Global Change Program (CA-1268-1-9014-10); and the USDA-Forest Service, PNW, NE, SE Stations (PNW 95-0730). The authors thank Tim Kittel and the VEMAP Data group at NCAR (Boulder, CO) for providing us with the climate scenarios. We also thank Steve Wondzell and Cathy Whitlock and two anonymous reviewers for their comments on the paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachelet, D., Neilson, R., Lenihan, J. et al. Regional Differences in the Carbon Source-Sink Potential of Natural Vegetation in the U.S.A. . Environmental Management 33 (Suppl 1), S23–S43 (2004). https://doi.org/10.1007/s00267-003-9115-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-9115-4

Keywords

Navigation