Skip to main content
Log in

The role of tadpole coloration against visually oriented predators

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

An animal’s vulnerability to predators can be influenced by its behavior, morphology, body size, coloration, habitat preferences, and palatability. We tested whether the coloration of Bokermannohyla saxicola and Scinax machadoi tadpoles affects their survival when exposed to local visually oriented predators at a site in southeastern Brazil. We tested three aquatic invertebrates (Aeshnidae, Belostoma sp., Lethocerus sp.) and birds as tadpole predators. We predicted that predation rates would differ depending on the substrate where the tadpoles positioned themselves (light or dark), hypothesizing that each tadpole would use preferentially a background that conferred camouflage and that predation levels would be lower on such backgrounds compared to others. B. saxicola had higher survivorship than S. machadoi on light backgrounds at some instances, in accordance with its crypsis hypothesis. However, B. saxicola tadpoles did not use light backgrounds more often than dark ones. S. machadoi coloration looked disruptive on both light and dark backgrounds, and tadpoles showed no preference or differences in survival rates between these backgrounds. Predation rates did not differ between the two species in a way that could confirm a previous hypothesis of aposematic/mimetic coloration for S. machadoi tadpoles. Our results show that colorations that appear to function to impair visual detection may play this role at some circumstances but not others. Tadpole colorations may have evolved in another context, in which avoiding visual detection by predators was a stronger selective pressure. In a context with lower predation pressure from visually oriented predators, the expected background choice behavior for increased camouflage may not be strongly selected for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alford RA (1999) Ecology, resource use and predation. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. The University of Chicago press, Chicago, pp 240–278

    Google Scholar 

  • Arnold SJ, Wassersug RJ (1978) Differential predation on the metamorphic anurans by gather snakes (Thamnophis): social behavior as a possible defense. Ecology 59:1014–1022

    Article  Google Scholar 

  • Bokermann WCA (1964) Dos nuevas especies de Hyla de Minas Gerais y notas sobre Hyla alvarengai Bok. (Amphibia, Salientia, Hylidae). Neotropica 10:67–76

    Google Scholar 

  • Bokermann WCA, Sazima I (1973) Anfíbios da Serra do Cipó, Minas Gerais, Brazil. 1: Duas espécies novas de Hyla (Anura, Hylidae). Rev Bras Biol 33:531–528

    Google Scholar 

  • Brodie ED Jr, Formanowicz DR, Brodie ED III (1978) The development of noxiousness of Bufo americanus tadpole to aquatic insect predators. Herpetologica 34:302–306

    Google Scholar 

  • Bybee SM, Kaihileipihamekeola-Johnson K, Gering EJ, Whiting MF, Crandall KA (2012) All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Org Divers Evol 12:241–250

    Article  Google Scholar 

  • Caldwell JP, Thorpe JH, Jervey TO (1980) Predator–prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46:285–289

    Article  Google Scholar 

  • Calef GW (1973) Natural mortality of tadpoles in a population of Rana aurora. Ecology 54:741–758

    Article  Google Scholar 

  • Callisto M, Moreno P, Barbosa FAR (2001) Habitat diversity and benthic functional trophic groups at Serra do Cipó, Southeast Brazil. Rev Bras Biol 61:259–266

    Article  CAS  Google Scholar 

  • Cecil SG, Just JJ (1979) Survival rate, population density and development of a naturally occurring anuran larvae (Rana catesbeiana). Copeia 1979:447–453

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Cornell University Press, Ithaca

    Google Scholar 

  • Costa ZJ, Kishida O (2015) Nonadditive impacts of temperature and basal resource availability on predator–prey interactions and phenotypes. Oecologia 178:1215–1225

    Article  PubMed  Google Scholar 

  • Dayton GH, Saenz D, Baum KA, Langerhans RB, Dewitt TJ (2005) Body shape, burst speed and escape behavior of larval anurans. Oikos 111:582–591

    Article  Google Scholar 

  • DeBenedictis PA (1974) Interspecific competition between tadpoles of Rana pipiens and Rana sylvatica: an experimental field study. Ecol Monogr 44:129–151

    Article  Google Scholar 

  • Dimitrova M, Merilaita S (2014) Hide and seek: properties of prey and background patterns affect prey detection by blue tits. Behav Ecol 25:402–408

    Article  Google Scholar 

  • Eklöv P, Werner EE (2000) Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88:250–258

    Article  Google Scholar 

  • Endler JA (2006) Disruptive and cryptic coloration. Proc R Soc Lond B 273:2425–2426

    Article  Google Scholar 

  • Eterovick PC, Oliveira FFR, Tattersall GJ (2010) Threatened tadpoles of Bokermannohyla alvarengai (Anura: Hylidae) choose backgrounds that enhance crypsis potential. Biol J Linn Soc 101:437–446

    Article  Google Scholar 

  • Eterovick PC, Sazima I (2004) Amphibians from the Serra do Cipó, Minas Gerais, Brazil. Editora Puc Minas, Belo Horizonte, Brazil

    Google Scholar 

  • Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist 294:1–240

    Article  Google Scholar 

  • Galdean N, Callisto M, Barbosa FAR (2000) Lotic ecosystems of Serra do Cipó, southeast Brazil: water quality and a tentative classification based on the benthic macroinvertebrate community. Aquat Ecosyst Health Manag 3:545–552

    Google Scholar 

  • Galdean N, Callisto M, Barbosa FAR (2001) Biodiversity assessment of benthic macroinvertebrates in altitudinal lotic ecosystems of Serra do Cipó (MG-Brazil). Braz J Biol 61:239–248

    PubMed  CAS  Google Scholar 

  • Gascon C (1992) Aquatic predators and tadpole prey in Central Amazonia: field data and experimental manipulations. Ecology 73:971–980

    Article  Google Scholar 

  • Garwood JM (2006) Rana cascadae (cascade frog). Tadpole predation. Herpetol Rev 37:76

    Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Herreid CF, Kinney S (1966) Survival of Alaskan woodfrog (Rana sylvatica) larvae. Ecology 47:1039–1041

    Article  Google Scholar 

  • Heyer WR, McDiarmid RW, Weigmann DL (1975) Tadpoles, predation and pond habitats in the tropics. Biotropica 7:100–111

    Article  Google Scholar 

  • Horta MAP, Melo AL, Bertoluci J (2010) A possible case of mimicry involving a heteropteran insect and an anuran tadpole. Herpetol Bull 114:4–7

    Google Scholar 

  • IBAMA (1994) Manual de anilhamento de aves silvestres, 2nd edn. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília, Brazil

    Google Scholar 

  • IUCN (2012a) Eterovick PC, Nascimento LB, Silvano D. 2004. Bokermannohyla saxicola. In: IUCN red list of threatened species, version 2012.1., http:/www.iucnredlist.org

  • IUCN (2012b) Nascimento LB, Eterovick PC. 2010. Scinax machadoi. In: IUCN red list of threatened species, version 2012.1., http:/www.iucnredlist.org

  • Johnson JB, Saenz D, Adams CK, Hibbits TJ (2015) Naturally occurring variation in tadpole morphology and performance linked to predator regime. Ecol Evol 5:2991–3002

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang C, Stevens M, Moon JY, Lee SI, Jablonski PG (2015) Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav Ecol 26:45–54

    Article  Google Scholar 

  • Kats LB, Petranka JW, Sih A (1988) Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69:1865–1870

    Article  Google Scholar 

  • Kjernsmo K, Merilaita S (2012) Background choice as an anti-predator strategy: the roles of background matching and visual complexity in the habitat choice of the least killifish. Proc R Soc Lond B 279:4192–4198

    Article  Google Scholar 

  • Kopp K, Wachlevski M, Eterovick PC (2006) Environmental complexity reduces tadpolepredation by water bugs. Can J Zool 84:136–140

    Article  Google Scholar 

  • Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc R Soc Lond B 273:1667–1671

    Article  Google Scholar 

  • Lima CA, Siqueira PR, Gonçalves RMM, Vasconcelos MF, Leite LO (2010) Dieta de aves da Mata Atlântica: uma abordagem baseada em conteúdos estomacais. Ornitol Neotropical 21:425–438

    Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lopes LE, Fernandes AM, Marini MA (2005a) Diet of some Atlantic forest birds. Ararajuba 13:95–103

    Google Scholar 

  • Lopes LE, Fernandes AM, Marini MA (2005b) Predation on vertebrates by Neotropical passerine birds. Lundiana 6:57–66

    Google Scholar 

  • Manhães MA (2003) Dieta de traupíneos (Passeriformes, Emberizidae) no Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Inheringia Sér Zool 93:59–73

    Google Scholar 

  • Merilaita S, Lind J (2005) Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc R Soc Lond B 272:665–670

    Article  Google Scholar 

  • Mogali SM, Shanbhag BA, Saidapur SK (2015) Strong food odours mask predation risk and affect evocation of defence behaviours in the tadpoles of Sphaerotheca breviceps. J Ethol 33:41–46

    Article  Google Scholar 

  • Morin PJ (1981) Predatory salamanders reverse the outcome of competition among three species of anuran tadpoles. Science 212:1284–1286

    Article  PubMed  CAS  Google Scholar 

  • Nieser N, Lopez-Ruf M (2001) A review of Limnocoris Stål (Heteroptera: Naucoridae) in Southern South America east of the Andes. Tijdschr Entomol 144:261–328

    Article  Google Scholar 

  • Nieser N, Melo AL (1997) Os Heterópteros aquáticos de Minas Gerais. Guia introdutório com chave de identificação para as espécies de Nepomorpha e Gerromorpha. Editora UFMG, Belo Horizonte, Brazil

    Google Scholar 

  • Nomura F, Marco P, Carvalho AFA, Rossa-Feres DC (2013) Does background colouration affect the behaviour of tadpoles? An experimental approach with an odonate predator. Ethol Ecol Evol 25:185–198

    Article  Google Scholar 

  • Nomura F, Prado VHM, da Silva FR, Borges RE, Dias NYN, Rossa-Feres DC (2011) Are you experienced? Predator type and predator experience trade-offs in relation to tadpole mortality rates. J Zool 284:144–150

    Article  Google Scholar 

  • Peacor S, Schiesari L, Werner E (2007) Mechanisms of nonlethal predator effect on cohort size variation: ecological and evolutionary implications. Ecology 88:1536–1547

    Article  PubMed  Google Scholar 

  • Pritchard G (1965) Prey capture by dragonfly larva. Can J Zool 43:271–289

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, version 3.2.2., https://cran.r-project.org/

  • Rafael JA, Melo GAR, Carvalho CJB, Casari SA, Constantino R (eds) (2012) Insetos do Brasil: Diversidade e Taxonomia. Holos Editora, Ribeirão Preto

    Google Scholar 

  • Rebora M, Piersanti S, Gaino E (2004) Visual and mechanical cues used for prey detection by the larva of Libellula depressa (Odonata, Libellulidae). Ethol Ecol Evol 16:133–144

    Article  Google Scholar 

  • Relyea RA (2004) Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85:172–179

    Article  Google Scholar 

  • Sabino U, Duca C (2011) Utilização do tártaro emético no estudo de dieta de aves. Natureza on Line 9:144–145

    Google Scholar 

  • Sick H (1997) Ornitologia Brasileira: edição revista e ampliada por José Fernando Pacheco. Nova Fronteira, Rio de Janeiro, Brazil

    Google Scholar 

  • Silva WR, Giaretta AA (2008) Further notes on the natural history of the South American pepper frog, Leptodactylus labyrinthicus (Spix, 1824) (Anura, Leptodactylidae). Braz J Biol 68:403–407

    Article  PubMed  CAS  Google Scholar 

  • Skelly DK (1994) Activity level and the susceptibility of anuran larvae to predation. Anim Behav 47:465–468

    Article  Google Scholar 

  • Smith DC, Van Buskirk J (1995) Phenotypic design, plasticity, and ecological performance in two tadpole species. Am Nat 145:211–233

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Article  Google Scholar 

  • Takahara T, Kohmatsu Y, Maruyama A, Doi H, Yamanaka H, Yamaoka R (2012) Inducible defense behavior of an anuran tadpole: cue-detection range and cue types used against predator. Behav Ecol 23:863–868

    Article  Google Scholar 

  • Taylor J (1983) Orientation and flight behavior of a Neotenic salamander (Ambystoma gracile) in Oregon. Am Midl Nat 109:40–49

    Article  Google Scholar 

  • Van Buskirk J (2002) A comparative test of the adaptive plasticity hypothesis: relationships between habitat and phenotype in anuran larvae. Am Nat 160:87–102

    Article  PubMed  Google Scholar 

  • Villa J, McDiarmid RW, Gallardo JM (1982) Arthropod predators of Leptodactylidae frog foam nests. Brenesia 19:577–589

    Google Scholar 

  • Voris HK, Bacon JP Jr (1966) Differential predation on tadpoles. Copeia 1966:594–598

    Article  Google Scholar 

  • Wassersug R (1971) On the comparative palatability of some dry-season tadpoles from Cost Rica. Am Midl Nat 86:101–109

    Article  Google Scholar 

  • Wassersug RJ, Sperry DG (1977) The relationship of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology 58:830–839

    Article  Google Scholar 

  • Werner EE, Anholt BR (1993) Ecological consequences of the trade-offs between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272

    Article  PubMed  CAS  Google Scholar 

  • Werner EE, McPeek MA (1994) Direct and indirect effects of predators on two anuran species along an environmental gradient. Ecology 75:1368–1382

    Article  Google Scholar 

  • Woodward BD (1983) Predator–prey interactions and breeding-pond use of temporary-pond species in a desert anuran community. Ecology 64:1549–1555

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to J. Kloh, H. Kiefer, L. Penna, G. Pimenta, E. Souza, F. Cristóvão, and others for help during field work, to J. E. C. Figueira, L. Schiesari, and two anonymous referees for suggestions on previous versions of this manuscript, to F. S. Neves, A. Viana, and C. A. Galdino for help with statistics, to CEMAVE and Sisbio/ICMBio for permits (35152-1), to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig; CRA APQ 01274-13), and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarships provided to JEMD and PCE (Productivity Grant 304422/2014-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Eterovick.

Ethics declarations

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig; CRA APQ 01274-13) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) who provided scholarships to JEMD and PCE (Productivity Grant 304422/2014-2).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed (permit obtained from ICMBio/Sisbio: 35152-1). During the whole study, 122 B. saxicola tadpoles and 126 S. machadoi tadpoles were predated, and 25 and 47 tadpoles, respectively, were injured by predators. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by K. Summers

Significance statement

The use of camouflage to avoid visually oriented predators may be an effective strategy as long as the prey is able to choose backgrounds that match their body colors (crypsis) or disrupts identification of body contour by matching some specific parts of the body but not others (disruptive camouflage). We used tadpoles of two species to test the hypotheses of (1) effective camouflage reducing predation and (2) tadpoles choosing backgrounds that promote lower predation levels. Although in some circumstances one species was shown to be less predated on a background expected to enhance its camouflage, it did not use this background more often than an alternative. Our results suggest that extant predation pressures may not be strong enough to shape background choice behavior in these tadpoles. Alternatively, tadpoles may choose backgrounds for camouflage just under imminent predation risk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espanha, J., de Vasconcelos, M.F. & Eterovick, P.C. The role of tadpole coloration against visually oriented predators. Behav Ecol Sociobiol 70, 255–267 (2016). https://doi.org/10.1007/s00265-015-2044-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-2044-4

Keywords

Navigation