Skip to main content
Log in

Convergent development of ecological, genetic, and morphological traits in native supercolonies of the red ant Myrmica rubra

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Ant supercolonies (large networks of interconnected nests) represent the most extreme form of multi-queen breeding (polygyny) and have been found across ant lineages, usually in specific long-term stable populations. Many studies on the genetic population structure and demography of ant supercolonies have been done in recent decades, but they have lacked multicolonial control patches with separated colonies headed by a single or few queens so the origin of the supercolonial trait syndrome has remained enigmatic. Here, we set out to compare sympatric supercolonial and multicolonial patches in two natural Danish populations of the common red ant Myrmica rubra. We used DNA microsatellites to reconstruct genetic colony/population structure and obtained morphological and density measurements to estimate life history and ecology covariates. We found that supercolonies in both populations completely dominated their patches whereas colonies in multicolonial patches coexisted with other ant species. Supercolony patches had very low genetic differentiation between nests, negligible relatedness within nests, and lower inbreeding than multicolonial patches, but there were no significant morphological differences. One population also had nests that approached true outbred monogyny with larger workers and males but smaller queens than in the two other social nest types. Our results suggest that once smaller colonies start to adopt additional queens, they also gain the potential to ultimately become supercolonial when the habitat allows rapid expansion through nest budding. This is relevant for understanding obligate polygyny in ants and for appreciating how and why introduced North American populations of M. rubra have recently become invasive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azuma N, Takahashi J, Kikuchi T et al (2005) Microsatellite loci for Myrmica kotokui and their application in some congeneric ant species distributed in northern Japan. Mol Ecol Notes 5:118–120. doi:10.1111/j.1471-8286.2004.00849.x

    Article  CAS  Google Scholar 

  • Bargum K, Helanterä H, Sundström L (2007) Genetic population structure, queen supersedure and social polymorphism in a social Hymenoptera. J Evol Biol 20:1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:R673–R683

    Article  PubMed  CAS  Google Scholar 

  • Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Phil Trans R Soc Lond B 364:3191–3207

    Article  Google Scholar 

  • Boomsma JJ, Huszár DB, Pedersen JS (2014) The evolution of multi-queen breeding in eusocial lineages with physically differentiated castes. Anim Behav 92:241–252

    Article  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Brown WD, Keller L (2002) Queen recruitment and split sex ratios in polygynous colonies of the ant Formica exsecta. Ecol Lett 5:102–109. doi:10.1046/j.1461-0248.2002.00291.x

    Article  Google Scholar 

  • Brown WD, Keller L, Sundström L (2002) Sex allocation in mound-building ants: the roles of resources and queen replenishment. Ecology 83:1945–1952

    Article  Google Scholar 

  • Chapuisat M, Goudet J, Keller L (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51:475–482

    Article  Google Scholar 

  • Chapuisat M, Bocherens S, Rosset H (2004) Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58:1064–1072

    Article  PubMed  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cronin AL, Molet M, Doums C et al (2012) Recurrent evolution of dependent colony foundation across eusocial insects. Annu Rev Entomol 58:37–55. doi:10.1146/annurev-ento-120811-153643

    Article  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genetics 92:832–839

    Article  Google Scholar 

  • Elmes GW (1987) Temporal variation in colony populations of the ant Myrmica sulcinodis: I. Changes in queen number, worker number and spring production. J Anim Ecol 56:559

    Article  Google Scholar 

  • Elmes GW, Thomas JA, Wardlaw JC et al (1998) The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J Insect Conserv 2:67–78

    Article  Google Scholar 

  • Ersts PJ (2013) Geographic distance matrix generator (version 1.2.3). American museum of natural history

  • Evans JD (1993) Parentage analyses in ant colonies using simple sequence repeat loci. Mol Ecol 2:393–397. doi:10.1111/j.1365-294X.1993.tb00032.x

    Article  PubMed  CAS  Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci U S A 99:6075–6079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

  • Goudet J (1999) PCA-GEN: a program to perform principal component analysis (PCA) on gene frequency data. Institute of Ecology, University of Lausanne, Switzerland. Available from http://www2.unil.ch/popgen/softwares/pcagen.htm. Accessed on 2014-2-6

  • Gyllenstrand N, Seppä P, Pamilo P (2005) Restricted gene flow between two social forms in the ant Formica truncorum. J Evol Biol 18:978–984. doi:10.1111/j.1420-9101.2005.00908.x

    Article  PubMed  CAS  Google Scholar 

  • Heinze J (2008) The demise of the standard ant (Hymenoptera: Formicidae). Myrmecol News 11:9–20

    Google Scholar 

  • Heinze J, Foitzik S (2009) The evolution of queen numbers in ants: from one to many and back. In: Gadau J, Fewell J (eds) Organization of insect societies, from genome to sociocomplexity. Harvard University Press, pp 26–50

  • Helanterä H, Strassmann JE, Carrillo J, Queller DC (2009) Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 24:341–349

    Article  PubMed  Google Scholar 

  • Henrich K-O, Sander A-C, Wolters V, Dauber J (2003) Isolation and characterization of microsatellite loci in the ant Myrmica scabrinodis. Mol Ecol Notes 3:304–306. doi:10.1046/j.1471-8286.2003.00433.x

    Article  CAS  Google Scholar 

  • Herbers JM, Mouser RL (1998) Microsatellite DNA markers reveal details of social structure in forest ants. Mol Ecol 7:299–306

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15

    Article  Google Scholar 

  • Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Holzer B, Chapuisat M, Kremer N et al (2006) Unicoloniality, recognition and genetic differentiation in a native Formica ant. J Evol Biol 19:2031–2039

    Article  PubMed  CAS  Google Scholar 

  • Holzer B, Keller L, Chapuisat M (2009) Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol Biol 9:69. doi:10.1186/1471-2148-9-69

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216

    Article  PubMed  CAS  Google Scholar 

  • Jaquiéry J, Vogel V, Keller L (2005) Multilevel genetic analyses of two European supercolonies of the Argentine ant, Linepithema humile. Mol Ecol 14:589–598. doi:10.1111/j.1365-294X.2005.02433.x

    Article  PubMed  Google Scholar 

  • Keller L (1993) Queen number and sociality in insects. Oxford University Press, Oxford

    Google Scholar 

  • Keller L (1995) Social life: the paradox of multiple-queen colonies. Trends Ecol Evol 10:355–360

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Higashi S, Murakami T (1999) A morphological comparison of alates between monogynous and polygynous colonies of Myrmica kotokui in northernmost Japan. Insect Soc 46:250–255

    Article  Google Scholar 

  • Kümmerli R, Helms KR, Keller L (2005) Experimental manipulation of queen number affects colony sex ratio investment in the highly polygynous ant Formica exsecta. Proc R Soc Lond B Biol Sci 272:1789–1794. doi:10.1126/science.274.5289.993

    Article  Google Scholar 

  • Meunier J, Chapuisat M (2009) The determinants of queen size in a socially polymorphic ant. J Evol Biol 22:1906–1913

    Article  PubMed  CAS  Google Scholar 

  • Moffett MW (2012) Supercolonies of billions in an invasive ant: what is a society? Behav Ecol 23:925–933

    Article  Google Scholar 

  • Nonacs P (1988) Queen number in colonies of social Hymenoptera as kin-selected adaptation. Evolution 42:566–580

    Article  Google Scholar 

  • Ouellette GD, Drummond FA, Choate B, Groden E (2010) Ant diversity and distribution in Acadia National Park, Maine. Environ Entomol 39:1447–1456

    Article  PubMed  Google Scholar 

  • Pamilo P (1985) Effect of inbreeding on genetic relatedness. Evolution 103:195–200

    CAS  Google Scholar 

  • Passera L (1994) Characteristics of tramp species. In: Williams ED (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 23–43

    Google Scholar 

  • Pedersen JS (2012) The logic of hypersocial colonies. Behav Ecol 23:934–935

    Article  Google Scholar 

  • Pedersen JS, Boomsma JJ (1999) Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J Evol Biol 12:903–917

    Article  Google Scholar 

  • Pedersen JS, Krieger MJB, Vogel V et al (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791

    Article  PubMed  Google Scholar 

  • Peeters C (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630

    Article  PubMed  CAS  Google Scholar 

  • Queller DC (1993) Genetic relatedness and its components in polygynous colonies of social insects. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 132–152

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Radchenko AG, Elmes GW (2010) Myrmica ants (Hymenoptera: Formicidae) of the old world. Natura Optima Dux Foundation

  • Reber A, Meunier J, Chapuisat M (2010) Flexible colony-founding strategies in a socially polymorphic ant. Anim Behav 79:467–472

    Article  Google Scholar 

  • Ross KG (1993) The breeding system of the fire ant Solenopsis invicta: effects on colony genetic structure. Am Nat 141:554–576. doi:10.1086/285491

    Article  PubMed  CAS  Google Scholar 

  • Rosset H, Chapuisat M (2006) Alternative life-histories in a socially polymorphic ant. Evol Ecol 21:577–588. doi:10.1007/s10682-006-9139-3

    Article  Google Scholar 

  • Roulston TH, Buczkowski G, Silverman J (2003) Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insect Soc 50:151–159

    Article  Google Scholar 

  • Schrempf A, Cremer S, Heinze J (2011) Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. J Evol Biol 24:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • Seppä P, Walin L (1996) Sociogenetic organization of the red ant Myrmica rubra. Behav Ecol Sociobiol 38:207–217

    Article  Google Scholar 

  • Seppä P, Gyllenstrand N, Corander J, Pamilo P (2004) Coexistence of the social types: genetic population structure in the ant Formica exsecta. Evolution 58:2462–2471. doi:10.1111/j.0014-3820.2004.tb00875.x

    PubMed  Google Scholar 

  • Seppä P, Johansson H, Gyllenstrand N et al (2012) Mosaic structure of native ant supercolonies. Mol Ecol 21:5880–5891

    Article  PubMed  Google Scholar 

  • Suarez AV, Holway DA, Tsutsui ND (2008) Genetics and behavior of a colonizing species: the invasive Argentine ant. Am Nat 172:S72–S84. doi:10.1086/588638

    Article  PubMed  Google Scholar 

  • Sundström L (1995a) Dispersal polymorphism and physiological condition of males and females in the ant, Formica truncorum. Behav Ecol 6:132–139

    Article  Google Scholar 

  • Sundström L (1995b) Sex allocation and colony maintenance in monogyne and polygyne colonies of Formica truncorum (Hymenoptera: Formicidae): the impact of kinship and mating structure. Am Nat 146:182–201

    Article  Google Scholar 

  • Tartally A (2000) Notes on the coexistence of the supercolonial Lasius neglectus Van Loon, Boomsma et Andrásfalvy 1990 (Hymenoptera: Formicidae) with other ant species. Tiscia 32:43–46

    Google Scholar 

  • Tsuji K (2010) What brings peace to the world of ants (Hymenoptera: Formicidae)? Myrmecol News 13:131–132

    Google Scholar 

  • Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58

    Article  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci U S A 97:5948–5953. doi:10.1073/pnas.100110397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van der Hammen T, Pedersen JS, Boomsma JJ (2002) Convergent development of low-relatedness supercolonies in Myrmica ants. Heredity 89:83–89

    Article  PubMed  Google Scholar 

  • Walin L, Seppä P, Sundström L (2001) Reproductive allocation within a polygyne, polydomous colony of the ant Myrmica rubra. Ecol Entomol 26:537–546

    Article  Google Scholar 

  • Wetterer JK, Radchenko AG (2011) Worldwide spread of the ruby ant, Myrmica rubra (Hymenoptera: Formicidae). Myrmecol News 14:87–96

    Google Scholar 

  • Zeisset I, Ebsen JR, Boomsma JJ (2005) Dinucleotide microsatellite DNA loci from the ant Myrmica scabrinodis. Mol Ecol Notes 5:163–164. doi:10.1111/j.1471-8286.2004.00871.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Henning Bang Madsen for contributing most of the body size measurements, Anders Illum for assistance in the field, Andreas Kelager for help with the GIS maps, David R. Nash and Sämi Schär for valuable discussions, Lotta Sundström and two anonymous referees for useful comments on the manuscript, and the Danish National Research Foundation for funding (DNRF57).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dóra B. Huszár.

Additional information

Communicated by L. Sundström

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huszár, D.B., Larsen, R.S., Carlsen, S. et al. Convergent development of ecological, genetic, and morphological traits in native supercolonies of the red ant Myrmica rubra . Behav Ecol Sociobiol 68, 1859–1870 (2014). https://doi.org/10.1007/s00265-014-1795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1795-7

Keywords

Navigation