Skip to main content
Log in

Communal roosting sites are potential ecological traps: experimental evidence in a Neotropical harvestman

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Situations in which animals preferentially settle in low-quality habitat are referred to as ecological traps, and species that aggregate in response to conspecific cues, such as scent marks, that persist after the animals leave the area may be especially vulnerable. We tested this hypothesis on harvestmen (Prionostemma sp.) that roost communally in the rainforest understory. Based on evidence that these animals preferentially settle in sites marked with conspecific scent, we predicted that established aggregation sites would continue to attract new recruits even if the animals roosting there perished. To test this prediction, we simulated intense predation by repeatedly removing all individuals from 10 established roosts, and indeed, these sites continued to attract new harvestmen. A more likely reason for an established roost to become unsuitable is a loss of overstory canopy cover caused by treefalls. To investigate this scenario, without felling trees, we established 16 new communal roosts by translocating harvestmen into previously unused sites. Half the release sites were located in intact forest, and half were located in treefall gaps, but canopy cover had no significant effect on the recruitment rate. These results support the inference that communal roost sites are potential ecological traps for species that aggregate in response to conspecific scent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre LF, Lens L, Matthysen E (2003) Patterns of roost use by bats in a Neotropical savanna: implications for conservation. Biol Conserv 111:435–443. doi:10.1016/s0006-3207(02)00313-0

    Article  Google Scholar 

  • Alonso-Mejia A, Rendon-Salinas E, Montesinos-Patino E, Brower LP (1997) Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol Appl 7:934–947. doi:10.2307/2269444

    Article  Google Scholar 

  • Barclay RMR, Brigham RM (2001) Year-to-year reuse of tree-roosts by California bats (Myotis californicus) in Southern British Columbia. Am Midl Nat 146:80–85. doi:10.1674/0003-0031(2001)146[0080:ytyrot]2.0.co;2

    Article  Google Scholar 

  • Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491. doi:10.1111/j.1523-1739.2004.00417.x

    Article  Google Scholar 

  • Betts MG, Hadley AS, Rodenhouse N, Nocera JJ (2008) Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc R Soc Lond Ser B Biol Sci 275:2257–2263. doi:10.1098/rspb.2008.0217

    Article  Google Scholar 

  • Bijleveld AI, Egas M, van Gils JA, Piersma T (2010) Beyond the information centre hypothesis: communal roosting for information on food, predators, travel companions and mates? Oikos 119:277–285. doi:10.1111/j.1600-0706.2009.17892.x

    Article  Google Scholar 

  • Bragagnolo C, Nogueira AA, Pinto-da-Rocha R, Pardini R (2007) Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol Conserv 139:389–400. doi:10.1016/j.biocon.2007.07.008

    Article  Google Scholar 

  • Breithaupt T, Thiel M (2011) Chemical communication in crusaceans. Springer, New York

    Book  Google Scholar 

  • Brooke AP, Solek C, Tualaulelei A (2000) Roosting behavior of colonial and solitary flying foxes in American Samoa (Chiroptera: Pteropodidae). Biotropica 32:338–350. doi:10.1111/j.1744-7429.2000.tb00477.x

    Article  Google Scholar 

  • Brown RE, Macdonald DW (1985) Social odours in mammals, vol 1-2. Clarendon, Oxford

    Google Scholar 

  • Campbell-Palmer R, Rosell F (2011) The importance of chemical communication studies to mammalian conservation biology: a review. Biol Conserv 144:1919–1930. doi:10.1016/j.biocon.2011.04.028

    Article  Google Scholar 

  • Carde RT, Millar JG (2004) Advances in insect chemical ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cardiff SG, Ratrimomanarivo FH, Goodman SM (2012) The effect of tourist visits on the behavior of Rousettus madagascariensis (Chiroptera: Pteropodidae) in the caves of Ankarana, northern Madagascar. Acta Chiropterologica 14:479–490. doi:10.3161/150811012x661783

    Article  Google Scholar 

  • Coddington JA, Horner M, Soderstrom EA (1990) Mass aggregations in tropical harvestmen (Opiliones, Gagrellidae: Prinostemma sp.). Rev Arachnologique 8:213–219

    Google Scholar 

  • Cody M (2000) Antbird guilds in lowland Caribbean rainforest of southeastern Nicaragua. Condor 102:784–794

    Google Scholar 

  • Curtis D, Machado G (2007) Ecology. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of opiliones. Harvard University Press, Cambridge, pp 280–308

    Google Scholar 

  • Daniel WW (1990) Applied nonparametric statistics, 2nd edn. PWS-KENT Publishing Company, Boston

    Google Scholar 

  • Delibes M, Gaona P, Ferreras P (2001) Effects of an attractive sink leading into maladaptive habitat selection. Am Nat 158:277–285. doi:10.1086/321319

    Article  PubMed  CAS  Google Scholar 

  • Dellasala DA, Anthony RG, Spies TA, Engel KA (1998) Management of bald eagle communal roosts in fire-adapted mixed-conifer forests. J Wildl Manag 62:322–333. doi:10.2307/3802295

    Article  Google Scholar 

  • Dennis RLH (2004) Just how important are structural elements as habitat components? Indications from a declining lycaenid butterfly with priority conservation status. J Insect Conserv 8:37–45. doi:10.1023/B:JICO.0000027496.82631.4b

    Article  Google Scholar 

  • Donaldson ZR, Grether GF (2007) Tradition without social learning: scent-mark-based communal roost formation in a Neotropical harvestman (Prionostemma sp.). Behav Ecol Sociobiol 61:801–809. doi:10.1007/s00265-006-0311-0

    Article  Google Scholar 

  • Donazar JA, Feijoo JE (2002) Social structure of andean condor roosts: influence of sex, age, and season. Condor 104:832–837. doi:10.1650/0010-5422(2002)104[0832:ssoacr]2.0.co;2

    Article  Google Scholar 

  • Donazar JA, Palacios CJ, Gangoso L, Ceballos O, Gonzalez MJ, Hiraldo F (2002) Conservation status and limiting factors in the endangered population of Egyptian vulture (Neophron percnopterus) in the Canary Islands. Biol Conserv 107:89–97. doi:10.1016/s0006-3207(02)00049-6

    Article  Google Scholar 

  • Farrell SL, Morrison ML, Campomizzi AJ, Wilkins RN (2012) Conspecific cues and breeding habitat selection in an endangered woodland warbler. J Anim Ecol 81:1056–1064. doi:10.1111/j.1365-2656.2012.01995.x

    Article  PubMed  Google Scholar 

  • Fleming HL, Jones JC, Belant JL, Richardson DM (2013) Multi-scale roost site selection by Rafinesque’s big-eared bat (Corynorhinus rafinesquii) and Southeastern Myotis (Myotis austroriparius) in Mississippi. Am Midl Nat 169:43–55

    Article  Google Scholar 

  • Fletcher RJ Jr, Orrock JL, Robertson BA (2012) How the type of anthropogenic change alters the consequences of ecological traps. Proc R Soc Lond Ser B Biol Sci 279:2546–2552. doi:10.1098/rspb.2012.0139

    Article  Google Scholar 

  • Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field forest ecotones. Ecology 59:871–883. doi:10.2307/1938540

    Article  Google Scholar 

  • Giraldeau L-A, Valone TJ, Templeton JJ (2002) Potential disadvantages of using socially acquired information. Philos Trans R Soc Lond B Biol Sci 357:1559–1566. doi:10.1098/rstb.2002.1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Grether GF, Donaldson ZR (2007) Communal roost site selection in a neotropical harvestman: habitat limitation vs. tradition. Ethology 113:290–300. doi:10.1111/j.1439-0310.2006.01328.x

    Article  Google Scholar 

  • Harms KE, Eberhard JR (2003) Roosting behavior of the brown-throated parakeet (Aratinga pertinax) and roost locations on four southern Caribbean islands. Ornitol Neotrop 14:79–89

    Google Scholar 

  • Hedin J, Isacsson G, Jonsell M, Komonen A (2008) Forest fuel piles as ecological traps for saproxylic beetles in oak. Scand J For Res 23:348–357. doi:10.1080/02827580802269991

    Article  Google Scholar 

  • Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw Biol 52:1700–1709. doi:10.1111/j.1365-2427.2007.01798.x

    Article  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325. doi:10.1890/080129

    Article  Google Scholar 

  • Kessler AC, Merchant JW, Shultz SD, Allen CR (2013) Cost-effectiveness analysis of sandhill crane habitat management. J Wildl Manag 77:1301–1310. doi:10.1002/jwmg.587

    Article  Google Scholar 

  • Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc R Soc Lond Ser B Biol Sci 273:1667–1671. doi:10.1098/rspb.2006.3500

    Article  Google Scholar 

  • Lambertucci SA, Jacome NL, Trejo A (2008) Use of communal roosts by Andean Condors in northwest Patagonia, Argentina. J Field Ornithol 79:138–146. doi:10.1111/j.1557-9263.2008.00155.x

    Article  Google Scholar 

  • McGeoch MA, Samways MJ (1991)Dragonflies and the thermal landscape implications for their conservation (Anisoptera). Odonatologica 20:303–320

    Google Scholar 

  • Mihoub J-B, Robert A, Le Gouar P, Sarrazin F (2011) Post-release dispersal in animal translocations: social attraction and the “vacuum effect”. PLoS One 6:e27453. doi:10.1371/journal.pone.0027453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller CW, Fletcher RJ Jr, Gillespie SR (2013) Conspecific and heterospecific cues override resource quality to influence offspring production. PLoS One 8:e70268. doi:10.1371/journal.pone.0070268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pärt T, Arlt D, Villard M-A (2007) Empirical evidence for ecological traps: a two-step model focusing on individual decisions. J Ornithol 148:S327–S332. doi:10.1007/s10336-007-0226-1

    Article  Google Scholar 

  • Rahaingodrahety VVN, Andriafidison D, Ratsimbazafy JH, Racey PA, Jenkins RK (2008) Three flying fox (Pteropodidae: Pteropus rufus) roosts, three conservation challenges in southeastern Madagascar. Madagascar Conserv Dev 3:17–21

    Google Scholar 

  • Ries L, Fagan WF (2003) Habitat edges as a potential ecological trap for an insect predator. Ecol Entomol 28:567–572. doi:10.1046/j.1365-2311.2003.00550.x

    Article  Google Scholar 

  • Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085. doi:10.1890/0012-9658(2006)87[1075:affuet]2.0.co;2

    Article  PubMed  Google Scholar 

  • Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560. doi:10.1016/j.tree.2013.04.004

    Article  PubMed  Google Scholar 

  • Santos FH (2007) Ecophysiology. Harvard Univeristy Press, Cambridge

    Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Article  Google Scholar 

  • Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088. doi:10.1016/j.anbehav.2013.02.017

    Article  Google Scholar 

  • Smith PG, Racey PA (2005) The itinerant Natterer: physical and thermal characteristics of summer roosts of Myotis nattereri (Mammalia : Chiroptera). J Zool 266:171–180. doi:10.1017/s0952836905006758

    Article  Google Scholar 

  • Smith AT, Cook DR, Johnson MB, Townsend VR Jr, Proud DN (2012) Comparative study of walking and climbing speeds among Neotropical harvestmen from Costa. Rica J Arachnol 40:304–308

    Article  Google Scholar 

  • Stoddart PD (1976) Mammalian odours and pheromones. Edward Arnold Ltd., London

    Google Scholar 

  • Teng B, Dao S, Donaldson ZR, Grether GF (2012) New communal roosting tradition established through experimental translocation in a Neotropical harvestman. Anim Behav 84:1183–1190. doi:10.1016/j.anbehav.2012.08.022

    Article  Google Scholar 

  • Uehara-Prado M, Fernandes JO, Bello AM, Machado G, Santos AJ, Vaz-de-Mello FZ, Lucci Freitas AV (2009) Selecting terrestrial arthropods as indicators of small-scale disturbance: a first approach in the Brazilian Atlantic Forest. Biol Conserv 142:1220–1228. doi:10.1016/j.biocon.2009.01.008

    Article  Google Scholar 

  • Van Dyck H (2012) Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation. Evol Appl 5:144–153. doi:10.1111/j.1752-4571.2011.00230.x

    Article  PubMed Central  Google Scholar 

  • Wade RR, Loaiza-Phillips EM, Townsend VR Jr, Proud DN (2011) Activity patterns of two species of Neotropical harvestmen (Arachnida: Opiliones) from Costa Rica. Ann Entomol Soc Am 104:1360–1366. doi:10.1603/an11018

    Article  Google Scholar 

  • Wyatt TD (2010) Phermonoes and animal behaviour: communications by smell and taste. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This study was carried out through the Field Biology Quarter program, with financial support from the Office of Instructional Development and the Department of Ecology and Evolutionary Biology, at the University of California Los Angeles. AL was supported by Epperson and Holmes O. Miller scholarships. We thank R. Chock and J.P. Drury for assistance in the field and the owners and staff of Refugio Bartola for service and hospitality. Two anonymous reviewers gave helpful comments on previous drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory F. Grether.

Additional information

Communicated by J. C. Choe

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Map of removal and control sites overlaid on an April 2013 satellite image of the study area from GoogleEarth (www.google.com). Removal sites (R1-R10) are shown in blue and control sites (C1-C8) are shown in yellow. (JPEG 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grether, G.F., Levi, A., Antaky, C. et al. Communal roosting sites are potential ecological traps: experimental evidence in a Neotropical harvestman. Behav Ecol Sociobiol 68, 1629–1638 (2014). https://doi.org/10.1007/s00265-014-1771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1771-2

Keywords

Navigation