Skip to main content
Log in

Bright turquoise as an intraspecific signal in the chameleon grasshopper (Kosciuscola tristis)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Bright colours often communicate important information between conspecifics. In sexually dichromatic species where males exhibit bright colours, two hypotheses are often invoked to explain the function of the colour. First, if a male’s bright colour contains information about his quality, females may prefer brighter males. Equally, male colour may reliably provide other males with information about fighting ability or resource holding potential. In such circumstances, brighter males may win altercations and/or males may use rival colour to assess their likelihood of winning an interaction. In the chameleon grasshopper (Kosciuscola tristis), males but not females turn bright turquoise when their body temperature exceeds 25 °C. In this study, we tested whether the turquoise phase of colour change has a signaling role in inter- and intrasexual contexts. We predicted that females would prefer bright turquoise males over dull males, but found no evidence from several choice experiments to support this hypothesis. We also predicted that brighter males would win more fights than duller males. Whilst we did not find that brighter males won more fights in staged experiments, we found that the brightness of males who chose to enter fights was significantly correlated with their opponents’ brightness. Our results suggest that the brightness of males’ turquoise phase may provide competitors with important information about their rival’s fighting ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo SA, Ehgoetz K, Sangster C, Whitehorne I (2006) Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis (Cephalopoda). Biol Bull 210:192–200

    Article  PubMed  Google Scholar 

  • Arnott G, Elwood RW (2008) Assessment of fighting ability in animal contests. Anim Behav 77:991–1004

    Article  Google Scholar 

  • Berthold G (1980) Microtubules in the epidermal cells of Carausius morosus, their pattern and relation to pigment migration. J Insect Physiol 26:421–425

    Article  Google Scholar 

  • Boal JG, Shashar N, Grable MM, Vaughan KH, Loew ER, Hanlon RT (2004) Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda). Behaviour 141:837–861

    Article  Google Scholar 

  • Bonduriansky R (2007) Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–849

    Article  PubMed  Google Scholar 

  • Bosi SG, Hayes J, Large MCJ, Poladian L (2008) Color, iridescence and thermoregulation in Lepidoptera. Appl Optics 47:5235–5241

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Ent 46:471–510

    Article  CAS  Google Scholar 

  • Buchner A, Erdfelder E, Faul F (1997) G*Power. University of Duesseldorf, Duesseldorf

    Google Scholar 

  • Casey TM (1981) Behavioral mechanisms of thermoregulation. Wiley, Toronto

    Google Scholar 

  • Clutton-Brock TH, Albon SD (1979) The roaring of red deer Cervus elaphus and the evolution of honest advertisment. Behaviour 69:145–170

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Routledge, London

    Google Scholar 

  • Conrad KF, Pritchard G (1989) Female dimorphism and physiological colour change in the damselfly Argia vivida Hagen (Odonata: coenagrionidae). Can J Zool 67:298–304

    Article  Google Scholar 

  • Cuadrado M (1998a) The use of yellow spot colors as a sexual receptivity signal in females of Chamaeleo chamaeleon. Herpetologica 54:395–402

    Google Scholar 

  • Cuadrado M (1998b) Models painted with female-like colors elicited courtship by male common chameleons: evidence for a courtship releaser. J Ethol 16:73–79

    Article  Google Scholar 

  • Cuadrado M (2000) Body colors indicate the reproductive status of female common chameleons: experimental evidence for the intersex communication function. Ethology 106:79–91

    Article  Google Scholar 

  • Dijkstra PD, Seehausen O, Groothuis TGG (2005) Direct male–male competition can facilitate invasion of new colour types in Lake Victoria cichlids. Behav Ecol Sociobiol 58:136–143

    Article  Google Scholar 

  • Ekblom R, Sæther SA, Grahn M, Fiske P, Kålås JA, Höglund J (2004) Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol Ecol 13:3821–3828

    Article  PubMed  CAS  Google Scholar 

  • Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    Article  PubMed  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153

    Article  Google Scholar 

  • Filshie BK, Day MF, Mercer EH (1975) Colour and colour change in the grasshopper, Kosciuscola tristis. J Insect Physiol 21:1763–1770

    Article  Google Scholar 

  • Forsman A (1997) Thermal capacity of different colour morphs in the pygmy grasshopper Tetrix subulata. Ann Zool Fenn 34:145–149

    Google Scholar 

  • Gillis JE (1982) Substrate color matching cues in the cryptic grasshopper Circotettix rabula rabula. Anim Behav 30:113–116

    Article  Google Scholar 

  • Hagelin JC, Ligon JD (2001) Female quail prefer testosterone-mediated traits, rather than the ornate plumage of males. Anim Behav 61:465–476

    Article  Google Scholar 

  • Hammerstein P, Parker GA (1982) The asymmetric was of attrition. J Theor Biol 96:647–682

    Article  Google Scholar 

  • Hauber ME, Sherman PW (2003) Designing and interpreting experimental tests of self-referent phenotype matching. Anim Cog 6:69–71

    Google Scholar 

  • Heinrich B (1993) The hot-blooded insects: strategies and mechanisms of thermoregulation. Springer, Berlin

  • Henwood K (1975) A field-tested thermoregulation model for two diurnal Namib Desert tenebrionid beetles. Ecology 56:1329–1342

    Article  Google Scholar 

  • Herring PJ (1965) Blue pigment of a surface living oceanic copepod. Nature 205:103–104

    Article  CAS  Google Scholar 

  • Hettyey A, Herczeg G, Laurila A, Crochet PA, Merila J (2009) Body temperature, size, nuptial colouration and mating success in male moor frogs (Rana arvalis). Amphib Reptil 30:37–43

    Article  Google Scholar 

  • Hurd P (1997) Is signalling of fighting ability costlier for weaker individuals? J Theor Biol 184:83–88

    Article  Google Scholar 

  • Jennings DJ, Gammell MP, Carlin CM, Hayden TJ (2004) Effect of body weight, antler length, resource value and experience on fight duration and intensity in fallow deer. Anim Behav 68:213–221

    Article  Google Scholar 

  • Jennions MD, Backwell PRY (1996) Residency and size affect fight duration and outcome in the fiddler crab Uca annulipes. Biol J Linn Soc 57:293–306

    Google Scholar 

  • Kasumovic MM, Elias DO, Punzalan D, Mason AC, Andrade MCB (2009) Experience affects the outcome of agonistic contests without affecting the selective advantage of size. Anim Behav 77:1533–1538

    Article  PubMed  Google Scholar 

  • Kelso EC, Verrell PA (2002) Do male veiled chameleons, Chamaeleo calyptratus, adjust their courtship displays in response to female reproductive status? Ethology 108:495–512

    Article  Google Scholar 

  • Key KHL, Day MF (1954a) A temperature-controlled physiological colour response in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: Acrididae). Aust J Zool 2:309–339

    Article  Google Scholar 

  • Key KHL, Day MF (1954b) The physiological mechanism of colour change in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: acrididae). Aust J Zool 2:340–363

    Article  Google Scholar 

  • Knowlton N, Keller B (1982) Symmetric fights as a measure of escalation potential in a symbiotic, territorial snapping shrimp. Behav Ecol Sociobiol 10:289–292

    Article  Google Scholar 

  • Langridge KV (2006) Symmetrical crypsis and asymmetrical signalling in the cuttlefish Sepia officinalis. P Roy Soc Lond B Bio 273:959–967

    Article  Google Scholar 

  • Ligon JD, Zwartjes PW (1995) Ornate plumage of male red junglefowl does not influence mate choice by females. Anim Behav 49:117–125

    Article  Google Scholar 

  • May ML (1979) Insect thermoregulation. Annu Rev Entomol 24:313–349

    Article  Google Scholar 

  • Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175

    Article  Google Scholar 

  • Møller AP, Alatalo RV (1999) Good-genes effects in sexual selection. Proc R Soc Lond B 266:85–91

    Article  Google Scholar 

  • Norman MD, Finn J, Tregenza T (1999) Female impersonation as an alternative reproductive strategy in giant cuttlefish. P Roy Soc Lond B Bio 266:1347–1349

    Article  Google Scholar 

  • Osorio D, Vorobyev M (2005) Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc R Soc Lond B Biol 272:1745–1752

    Article  CAS  Google Scholar 

  • Otte D (1970) A comparative study of communicative behavior in grasshoppers. Miscellaneous Publications of the Museum of Zoology, University of Michigan 141:1–168

  • O’Farrell AF (1964) On physiological colour change in some Australian Odonata. J Ent Soc Aust (NSW) 1:5–12

    Google Scholar 

  • Palmer ME, Calvé MR, Adamo SA (2006) Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish. Anim Cog 9:151–155

    Article  CAS  Google Scholar 

  • Prum RO, Morrison RL, Eyck GR (1994) Ten Structural color production by constructive reflection from ordered collagen arrays in a bird (Philapitta castanea: eurylaimidae). J Morphol 222:61–72

    Article  Google Scholar 

  • Ries C, Spaethe J, Sztatecsny M, Strondl C, Hodl W (2008) Turning blue and ultraviolet: sex-specific colour change during the mating season in the Balkan moor frog. J Zool 276:229–236

    Article  Google Scholar 

  • Simmons LW, Tomkins JL (1996) Sexual selection and the allometry of earwig forceps. Evol Ecol 10:97–104

    Article  Google Scholar 

  • Stuart-Fox D, Moussalli A (2008a) Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos Trans R Soc B 364:463–470

    Article  Google Scholar 

  • Stuart-Fox D, Moussalli A (2008b) Selection for social signalling drives the evolution of chameleon colour change. PLoS Biol 6:22–29

    Article  CAS  Google Scholar 

  • Stuart-Fox D, Moussalli A, Whiting MJ (2008) Predator-specific camouflage in chameleons. Biol Lett 4:326–329

    Article  PubMed  Google Scholar 

  • Sword GA, Simpson SJ (2000) Is there an intraspecific role for density-dependent colour change in the desert locust? Anim Behav 59:861–870

    Article  PubMed  Google Scholar 

  • Taylor PW, Elwood RW (2003) The mismeasure of animal contests. Anim Behav 65:1195–1202

    Article  Google Scholar 

  • Taylor PW, Hasson O, Clark DL (2001) Initiation and resolution of jumping spider contests: roles for size, proximity, and early detection of rivals. Behav Ecol Sociobiol 50:403–413

    Article  Google Scholar 

  • Thomas L, Juanes F (1996) The importance of statistical power analysis: an example from animal behaviour. Anim Behav 52:856–859

    Article  Google Scholar 

  • Tichy H, Loftus R (1987) Response characteristics of a cold receptor in the stick insect Carausius morosus. J Comp Phys A 160:33–42

    Article  Google Scholar 

  • Turner H, Firth D (2010) Bradley–Terry models in R: the BradleyTerry2 package

  • Umbers KDL (2011) Turn the temperature to turquoise: cues for colour change in the male chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae). J Insect Physiol 57:1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Umbers KDL, Herberstein ME, Madin JS (2012a) Colour in insect thermoregulation: empirical and theoretical tests in a colour-changing grasshopper. J Insect Physiol. doi:10.1016/j.jinsphys.2012.10.016

  • Umbers KDL, Tatarnic NJ, Herberstein ME (2012b) Ferocious fighting between male grasshoppers. PLoS One 7:e49600

    Article  PubMed  CAS  Google Scholar 

  • Velando A, Beamonte-Barrientos R, Torres RH (2006) Pigment-based skin colour in the blue-footed booby: an honest signal of current condition used by females to adjust reproductive investment. Oecologica 149:535–542

    Article  Google Scholar 

  • Veron JEN (1973) The physiological control of the chromatophores of Austrolestes annulosus (Odonata). J Insect Physiol 19:1689–1703

    Article  Google Scholar 

  • Veron JEN (1974) The role of physiological colour change in the thermoregulation of Austrolestes annulosus (Selys) (Odonata). Aust J Zool 22:457–469

    Article  Google Scholar 

  • Veron JEN, O’Farrell AF, Dixon B (1974) The fine structure of Odonata chromatophores. Tissue Cell 6:613–626

    Article  PubMed  CAS  Google Scholar 

  • Vigneron JP, Pasteels JM, Windsor DM, Vértesy Z, Rassart M, Seldrum T, Dumont J, Deparis O, Lousse V, Biró LP, Ertz D, Welch V (2007) Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). Phys Rev E 76:031907

    Article  Google Scholar 

  • Wells MS (1988) Effects of body size and resource value on fighting behaviour in a jumping spider. Anim Behav 36:321–326

    Article  Google Scholar 

Download references

Acknowledgments

We thank David Firth for advice on the Bradley–Terry model; Nola Umbers, Mark Umbers, Natalie Alves, James C. O’Hanlon for excellent and enthusiastic field assistance; Leanne Battams, Czarina Manahan, Gemma Conroy for lab assistance; Sean McGlinchy and family for accommodation at Parallel Chalets; and the Australia & Pacific Science Foundation and Thredbo Sports Pty Ltd. for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate D. L. Umbers.

Additional information

Communicated by D. Gwynne

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umbers, K.D.L., Tatarnic, N.J., Holwell, G.I. et al. Bright turquoise as an intraspecific signal in the chameleon grasshopper (Kosciuscola tristis). Behav Ecol Sociobiol 67, 439–447 (2013). https://doi.org/10.1007/s00265-012-1464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1464-7

Keywords

Navigation