, Volume 62, Issue 3, pp 299-307

Sibling competition and cooperation in mammals: challenges, developments and prospects

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Many vertebrates grow up in the company of same or different-age siblings, and relations among them can be expected to significantly influence individual life histories and the development of individual morphological, physiological, and behavioral phenotypes. Although studies in birds still dominate and have stimulated most theoretical considerations, the increasing number of mammalian studies promises to broaden our understanding of this complex field by enabling interesting comparisons with the rather different bird system. It therefore seems timely to bring together recent studies of sibling relations in mammals and to demonstrate what these can offer in the way of fresh insights. In this brief review, intended to accompany a series of papers on a diverse range of mammals, we outline the current state of sibling research in mammals, comparing it to the better studied birds. Most obviously, in mammals, mother and young are in much closer contact during early life than in birds, and siblings can influence each other’s development as well as the mother’s physiology while still in utero. During nursing, mammalian young also encounter a very different feeding situation to bird siblings. These contrasts should help stimulate further debate, as well as provide further opportunities to study the relative importance of maternal versus sibling effects on individual development. Finally, we discuss the need to balance studies of sibling competition and conflict with a consideration of the benefits accruing to individuals from sibling presence and the need for long-term studies of the influence of early sibling relations on individual development and life histories.

Communicated by A. Schulte-Hostedde
This contribution represents the introduction to the special issue “Sibling competition and cooperation in mammals”.