Skip to main content
Log in

Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The glycosaminoglycan (GAG) chemical exchange saturation transfer (CEST) imaging method (gagCEST) makes it possible to assess and quantify the GAG concentration in human cartilage. This biochemical imaging technique facilitates detection of the loss of GAG in the course of osteoarthritis. The gagCEST technique was used to analyse the perilesional zone (PLZ) adjacent to repair tissue after cartilage repair surgery, to determine whether there are biochemical changes present in the sense of degeneration.

Method

Asymmetries in the PLZ of cartilage defects in 11 patients, who had been treated by microfracturing or matrix-associated autologous chondrocyte transplantation (MACT), were measured by gagCEST on a 7-T whole-body system. These results were correlated with gagCEST asymmetries of healthy reference cartilage (RC), measured anterior and posterior to the PLZ and to the repair tissue (RT).

Results

The mean gagCEST asymmetry for the anterior PLZ was 4.8% (±4.4), for the posterior PLZ 5.4% (±2.3), for the anterior RC 6.6% (±3.5) and 7.2% (±3.3) for the posterior RC and 4.5% (±2.3) for the RT. The difference between the anterior PLZ and the anterior RC (p = 0.019), the posterior PLZ and the posterior RC (p = 0.005), and the mean RC and the RT (p = 0.021) were all statistically significant. The measurements between RT and mean PLZ did not reveal significant results (p = 0.398).

Conclusions

The gagCEST method provides a potentially useful biomarker for the loss of GAGs, indicating cartilage degeneration in the PLZ. Pre-operative and post-operative monitoring of the biomechanical state of the cartilage might influence intra-operative decision-making concerning the extent of cartilage resection or might give information of the success of the treatment post-operatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    Article  Google Scholar 

  2. Welsch GH, Mamisch TC, Marlovits S, Glaser C, Friedrich K, Hennig FF, Salomonowitz E, Trattnig S (2009) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963. doi:10.1002/jor.20835

    Article  PubMed  Google Scholar 

  3. Domayer SE, Welsch GH, Dorotka R, Mamisch TC, Marlovits S, Szomolanyi P, Trattnig S (2008) MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol 12(4):302–317. doi:10.1055/s-0028-1100638

    Article  PubMed  Google Scholar 

  4. Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, Bieri O, Trattnig S (2011) Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol 21(6):1136–1143. doi:10.1007/s00330-010-2029-7

    Article  PubMed  Google Scholar 

  5. Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E, Watanabe A, Deimling M, Mamisch TC (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imagin 26(4):974–982. doi:10.1002/jmri.21091

  6. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 15(7):789–797. doi:10.1016/j.joca.2007.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D, Mamisch TC, Bieri O, Scheffler K, Zbyn S (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257(1):175–184. doi:10.1148/radiol.10100279

    Article  PubMed  Google Scholar 

  8. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105(7):2266–2270. doi:10.1073/pnas.0707666105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trattnig S, Zbyn S, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22(11):2338–2346. doi:10.1007/s00330-012-2508-0

    Article  PubMed  Google Scholar 

  10. Rehnitz C, Kupfer J, Streich NA, Burkholder I, Schmitt B, Lauer L, Kauczor HU, Weber MA (2014) Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthritis Cartilage 22(10):1732–1742. doi:10.1016/j.joca.2014.04.020

    Article  CAS  PubMed  Google Scholar 

  11. Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 23(10):1639–1653. doi:10.1016/j.joca.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  12. Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  13. Campbell AB, Knopp MV, Kolovich GP, Wei W, Jia G, Siston RA, Flanigan DC (2013) Preoperative MRI underestimates articular cartilage defect size compared with findings at arthroscopic knee surgery. Am J Sports Med. doi:10.1177/0363546512472044

    Google Scholar 

  14. Ahmed TA, Hincke MT (2010) Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng B Rev 16(3):305–329. doi:10.1089/ten.TEB.2009.0590

    Article  CAS  Google Scholar 

  15. Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92(4):994–1009. doi:10.2106/JBJS.I.00895

    Article  PubMed  Google Scholar 

  16. Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage Res Soc 21(12):1824–1833. doi:10.1016/j.joca.2013.08.024

  17. Moradi B, Schonit E, Nierhoff C, Hagmann S, Oberle D, Gotterbarm T, Schmitt H, Zeifang F (2012) First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years’ clinical and magnetic resonance imaging follow-up evaluation. Arthroscopy 28(12):1851–1861. doi:10.1016/j.arthro.2012.05.883

    Article  PubMed  Google Scholar 

  18. Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, Almqvist KF (2012) Short-term outcome of the second generation characterized chondrocyte implantation for the treatment of cartilage lesions in the knee. Knee Surg Sports Traumatol Arthrosc 20(6):1118–1127. doi:10.1007/s00167-011-1759-7

    Article  CAS  PubMed  Google Scholar 

  19. Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, Ackland T, Wood DJ (2011) Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 39(4):753–763. doi:10.1177/0363546510390476

    Article  PubMed  Google Scholar 

  20. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920. doi:10.2106/JBJS.D.02846

    PubMed  Google Scholar 

  21. Marlovits S, Aldrian S, Wondrasch B, Zak L, Albrecht C, Welsch G, Trattnig S (2012) Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 40(10):2273–2280. doi:10.1177/0363546512457008

    Article  PubMed  Google Scholar 

  22. Oussedik S, Tsitskaris K, Parker D (2015) Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy 31(4):732–744. doi:10.1016/j.arthro.2014.11.023

    Article  PubMed  Google Scholar 

  23. Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res 33(3):390–397. doi:10.1002/jor.22773

    Article  PubMed  Google Scholar 

  24. Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ (2002) Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20(10):721–731

    Article  CAS  PubMed  Google Scholar 

  25. Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattnig S (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 260(1):257–264. doi:10.1148/radiol.11101841

    Article  PubMed  Google Scholar 

  26. Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G (2010) Treatment of articular cartilage lesions of the knee. Int Orthop 34(5):621–630. doi:10.1007/s00264-010-0959-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trzeciak T, Richter M, Suchorska W, Augustyniak E, Lach M, Kaczmarek M, Kaczmarczyk J (2016) Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. Int Orthop 40(3):615–624. doi:10.1007/s00264-015-3099-6

    Article  PubMed  Google Scholar 

  28. Kaul G, Cucchiarini M, Remberger K, Kohn D, Madry H (2012) Failed cartilage repair for early osteoarthritis defects: a biochemical, histological and immunohistochemical analysis of the repair tissue after treatment with marrow-stimulation techniques. Knee Surg Sports Traumatol Arthrosc 20(11):2315–2324. doi:10.1007/s00167-011-1853-x

    Article  PubMed  Google Scholar 

  29. Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13(3):213–221. doi:10.1007/s00167-004-0499-3

    Article  PubMed  Google Scholar 

  30. Richter DL, Schenck RC Jr, Wascher DC, Treme G (2016) Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health 8(2):153–160. doi:10.1177/1941738115611350

    Article  PubMed  Google Scholar 

  31. Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M (2013) Matrix assisted autologous chondrocyte transplantation for cartilage treatment: a systematic review. Bone Joint Res 2(2):18–25. doi:10.1302/2046-3758.22.2000092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, Friedrich KM, Marlovits S, Weber M, Trattnig S (2012) Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage 20(5):357–363. doi:10.1016/j.joca.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  33. Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, Hariharan H, Reddy R (2012) Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 68(2):588–594. doi:10.1002/mrm.23250

    Article  PubMed  Google Scholar 

  34. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23. doi:10.1016/j.ejrad.2005.08.007

    Article  PubMed  Google Scholar 

  35. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, Trattnig S (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52(3):310–319. doi:10.1016/j.ejrad.2004.03.014

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the FWF-DACH program 1652-B19 and by the Vienna Spots of Excellence of the Vienna Science and Technology Fund (WWTF) (Christian Doppler Laboratory for Clinical Molecular Imaging (MOLIMA) FA102A0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Koller.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest relating to the submitted work. The examinations were performed both in accordance with and with approval of the local ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, U., Apprich, S., Schmitt, B. et al. Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. International Orthopaedics (SICOT) 41, 969–974 (2017). https://doi.org/10.1007/s00264-017-3434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3434-1

Keywords

Navigation