Skip to main content
Log in

Highly crosslinked polyethylene: a safe alternative to conventional polyethylene for dual mobility cup mobile component. A biomechanical validation

International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Dual mobility cup (DMC) consists of a cobalt-chromium (CoCr) alloy cup articulated with a polyethylene (PE) mobile component capturing the femoral head in force using a snap-fit technique. This biomechanical study was the first to evaluate and compare the generation of cracks in the retentive area of DMC mobile components made of highly crosslinked PE (XLPE) or conventional ultra-high molecular weight PE (UHMWPE).

Methods

Eighty mobile components designed for a 52-mm diameter Symbol® DMC (Dedienne Santé, Mauguio, France) and a 28-mm diameter femoral head were analyzed. Four groups of 20 mobile components were constituted according to the PE material: raw UHMWPE, sterilized UHMWPE, annealed XLPE and remelted XLPE. Ten mobile components in each group were impacted with a 28-mm diameter CoCr femoral head using a snap-fit technique. The occurrence, location and area of the cracks in the retentive area were investigated using micro-CT (Skyscan 1176®, Bruker, Aarsellar, Belgium) with a 35 μm nominal isotropic voxel size by two observers blinded to the PE material and impaction or not of the mobile components.

Results

Compared to conventional UHMWPE, the femoral head snap-fit did not generate more or wider cracks in the retentive area of annealed or remelted XLPE mobile components.

Conclusion

This biomechanical study suggests that XLPE in DMC could be a safe alternative to conventional UHMWPE regarding the generation of cracks in the retentive area related to the femoral head snap-fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Guyen O, Chen QS, Béjui-Hugues J, Berry DJ, An KN (2007) Unconstrained tripolar hip implants: effect on hip stability. Clin Orthop Relat Res 455:202–208. doi:10.1097/01.blo.0000238796.59596.1f

    Article  PubMed  Google Scholar 

  2. Noyer D (2003) La troisième articulation des prothèses de hanche à double mobilité. Maîtrise Orthopédique 121:20–22

    Google Scholar 

  3. Philippot R, Boyer B, Farizon F (2013) Intraprosthetic dislocation: a specific complication of the dual-mobility system. Clin Orthop Relat Res 471:965–970. doi:10.1007/s11999-012-2639-2

    Article  PubMed  Google Scholar 

  4. Adam P, Farizon F, Fessy MH (2014) Dual mobility retentive acetabular liners and wear: surface analysis of 40 retrieved polyethylene implants. Orthop Traumatol Surg Res 100:85–91. doi:10.1016/j.otsr.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  5. Loving L, Lee RK, Herrera L, Essner AP, Nevelos JE (2013) Wear performance evaluation of a contemporary dual mobility hip bearing using multiple hip simulator testing conditions. J Arthroplasty 28:1041–1046. doi:10.1016/j.arth.2012.09.011

    Article  PubMed  Google Scholar 

  6. D’Apuzzo MR, Koch CN, Esposito CI, Elpers ME, Tm W, Westricht GH (2016) Assessment of damage on a dual mobility acetabular system. J Arthroplasty 31:1828–1835. doi:10.1016/j.arth.2016.01.039

    Article  PubMed  Google Scholar 

  7. Loving L, Herrera L, Banerjee S, Effernan C, Nevelos JE, Markel DC, Mont MA (2015) Dual mobility bearings withstand loading from steeper cup-inclinations without substantial wear. J Orthop Res 33:398–404. doi:10.1002/jor.22774

    Article  CAS  PubMed  Google Scholar 

  8. Massin P, Orain V, Philippot R, Farizon F, Fessy MH (2012) Fixation failures of dual mobility cups: a mid-term study of 2601 hip replacements. Clin Orthop Relat Res 470:1932–1940. doi:10.1007/s11999-011-2213-3

    Article  PubMed  Google Scholar 

  9. Wegrzyn J, Tebaa E, Jacquel A, Carret JP, Bejui-Hugues J, Pibarot V (2015) Can dual mobility cups prevent dislocation in all situations after revision total hip arthroplasty? J Arthroplasty 30:631–640. doi:10.1016/j.arth.2014.10.034

    Article  PubMed  Google Scholar 

  10. Combes A, Migaud H, Girard J, Duhamel A, Fessy MH (2013) Low rates of dislocation of dual-mobility cups in primary total hip arthroplasty. Clin Orthop Relat Res 471:3891–3900. doi:10.1007/s11999-013-2929-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. D’Apuzzo MR, Nevelos J, Yeager A, Westrich GH (2014) Relative head size increase using an anatomic dual mobility hip prosthesis compared to traditional hip arthroplasty: impact on hip stability. J Arthroplasty 29:1854–1856. doi:10.1016/j.arth.2014.04.035

    Article  PubMed  Google Scholar 

  12. Caton JH, Prudhon JL, Ferreira A, Aslanian T, Verdier R (2014) A comparative and retrospective study of three hundred and twenty primary Charnley type hip replacements with a minimum follow up of ten years to assess whether a dual mobility cup has a decreased dislocation risk. Int Orthop 38:1125–1129. doi:10.1007/s00264-014-2313-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prudhon JL, Ferreira A, Verdier R (2013) Dual mobility cup: dislocation rate and survivorship at ten years of follow up. Int Orthop 37:2345–2350. doi:10.1007/s00264-013-2067-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leclercq S, Benoit JY, de Rosa JP, Tallier E, Leteurtre C, Girardin P (2013) Evora® chromium-cobalt dual mobility socket: results at a minimum 10 years’ follow up. Orthop Traumatol Surg Res 99:923–928. doi:10.1016/j.otsr.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  15. Paxton EW, Inacio MCS, Namba RS, Love R, Kurtz SM (2015) Metal-on-conventional polyethylene total hip arthroplasty bearing surfaces have a higher risk of revision than metal-on-highly crosslinked polyethylene: results from a US registry. Clin Orthop Relat Res 473:1011–1021. doi:10.1007/s11999-014-4105-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Glyn-Jones S, Thomas GE, Garfjeld-Roberts P, Gundle R, Taylor A, McLardy-Smith P, Murray DW (2015) The John Charnley Award: highly crosslinked polyethylene in total hip arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop Relat Res 473:432–438. doi:10.1007/s11999-014-3735-2

  17. Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2:433–443. doi:10.1016/j.jmbbm.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Gencur SJ, Rimnac CM, Kurtz SM (2006) Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene. Biomaterials 27:1550–1557. doi:10.1016/j.biomaterials.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  19. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–915. doi:10.1016/j.biomaterials.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  20. Sirimamilla A, Furmanski J, Rimnac C (2013) Peak stress intensity factor governs crack propagation velocity in crosslinked ultrahigh-molecular-weight polyethylene. J Biomed Mater Res B Appl Biomater 101:430–435. doi:10.1002/jbm.b.32850

    PubMed  Google Scholar 

  21. Baker DA, Bellare A, Pruitt L (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res A 66:146–154. doi:10.1002/jbm.a.10606

    Article  CAS  PubMed  Google Scholar 

  22. Medel FJ, Peña P, Cegoñino J, Gómez-Barrena E, Puértolas JA (2007) Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J Biomed Mater Res B Appl Biomater 83:380–390. doi:10.1002/jbm.b.30807

    Article  PubMed  Google Scholar 

  23. Ast MP, John TK, Labbisiere A, Robador N, Valle AG (2014) Fractures of a single design of highly cross-linked polyethylene acetabular liners: an analysis of voluntary reports to the United States Food and Drug Administration. J Arthroplasty 29:1231–1235. doi:10.1016/j.arth.2013.12.022

    Article  PubMed  Google Scholar 

  24. Furmanski J, Kraay MJ, Rimnac C (2011) Crack initiation in retrieved cross-linked highly cross-linked ultrahigh-molecular-weight polyethylene acetabular liners. an investigation of 9 cases. J Arthroplasty 26:796–801. doi:10.1016/j.arth.2010.07.016

    Article  PubMed  Google Scholar 

  25. Birman MV, Noble PC, Conditt MA, Li S, Mathis KB (2005) Cracking and impingement in ultra-high-molecular-weight polyethylene acetabular liners. J Arthroplasty 20:87–92. doi:10.1016/j.arth.2005.05.001

    Article  PubMed  Google Scholar 

  26. Kurtz SM, Austin MS, Azzam K, Sharkey PF, MacDonald DW, Medel FJ, Hozack WJ (2010) Mechanical properties, oxidation, and clinical performance of retrieved highly cross-linked Crossfire liners after intermediate-term implantation. J Arthroplasty 25:614–623. doi:10.1016/j.arth.2009.04.022

    Article  PubMed  Google Scholar 

  27. Kurtz SM, Manley M, Wang A, Taylor S, Dumbleton J (2002–2003) Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bull Hosp Jt Dis 61:17–26

  28. MacDonald D, Sakona A, Ianuzzi A, Rimnac CM, Kurtz SM (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285. doi:10.1007/s11999-010-1728-3

    Article  PubMed  Google Scholar 

  29. Muratoglu OK, Oral E (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35:215–223. doi:10.1007/s00264-010-1161-y

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Wegrzyn.

Ethics declarations

Funding

This study was internally funded by the research laboratory INSERM UMR1033, Université de Lyon, Lyon, France. The authors thank Dedienne Santé (Mauguio, France) and the AXIOM group for providing the implants used in testing.

Conflict of interest

MM, SG and JPR declare that they have no conflict of interest. VP and JW have received royalties from Dedienne Santé (Mauguio, France).

Studies with human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors. Therefore, IRB approval was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malatray, M., Roux, JP., Gunst, S. et al. Highly crosslinked polyethylene: a safe alternative to conventional polyethylene for dual mobility cup mobile component. A biomechanical validation. International Orthopaedics (SICOT) 41, 507–512 (2017). https://doi.org/10.1007/s00264-016-3334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3334-9

Keywords

Navigation