Skip to main content

Advertisement

Log in

Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purposes

This study investigated whether mechano growth factor-E (MGF-E) peptide can regulate apoptosis and inflammation responses in fibroblast-like synoviocytes of osteoarthritis (OA).

Methods

A (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay was performed to evaluate cytotoxic effects of exogenous MGF-E peptide on OA fibroblast-like synoviocytes (OA-FLS). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to check messenger RNA (mRNA) expression levels of lysyl oxidase (LOX) family members (LOX) after OA-FLS treatment using MGF-E peptide. A 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay was performed to identify the influence of MGF-E peptide on proliferation OA-FLS proliferation. Western blot was used to detect biomarkers of endoplasmic reticulum (ER) stress and inflammatory cytokines.

Results

Exogenous MGF-E peptide has no obvious cytotoxic effects on OA-FLS and promotes LOX expression in OA-FLS, induce apoptosis and ER stress and down-regulate protein levels of tumour necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β).

Conclusions

Our results suggest that MGF-E peptide possesses potential anti-inflammatory effects, induces cell apoptosis and facilitates repair of OA-FLS. Therefore, MGF-E peptide may have therapeutic potential in patients with OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li N, Rivéra-Bermúdez MA, Zhang M et al (2010) LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proc Natl Acad Sci U S A 107:3734–3739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nair A, Kanda V, Bush-Joseph C et al (2012) Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. Arthritis Rheum 64:2268–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kloesch B, Liszt M, Krehan D et al (2012) High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett 141:197–203

    Article  CAS  PubMed  Google Scholar 

  4. Fu Z, Liu P, Yang D et al (2012) Interleukin-18-induced inflammatory responses in synoviocytes and chondrocytes from osteoarthritic patients. Int J Mol Med 30:805–810

    CAS  PubMed  Google Scholar 

  5. Foufelle F, Ferre P (2007) Unfolded protein response: its role in physiology and physiopathology. Med Sci (Paris) 23:291–296

    Article  Google Scholar 

  6. Hollien J (2013) Evolution of the unfolded protein response. Biochim Biophys Acta 1833:2458–2463

    Article  CAS  PubMed  Google Scholar 

  7. Misra UK, Pizzo SV (2010) Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15:173–182

    Article  CAS  PubMed  Google Scholar 

  8. Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends BiochemSci 36:329–337

    Article  CAS  Google Scholar 

  9. Kim R, Emi M, Tanabe K et al (2006) Role of the unfolded protein response in cell death. Apoptosis 11:5–13

    Article  CAS  PubMed  Google Scholar 

  10. Feng LJ, Jiang TC, Zhou CY et al (2014) Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis. Inflamm Res 63:335–346

    Article  CAS  PubMed  Google Scholar 

  11. Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda) 20:232–238

    Article  CAS  Google Scholar 

  12. Milingos D, Katopodis H, Milingos S et al (2006) Insulin-like growth factor-1 isoform mRNA expression in women with endometriosis: eutopic endometrium versus endometriotic cyst. Ann N Y Acad Sci 1092:434–439

    Article  CAS  PubMed  Google Scholar 

  13. Philippou A, Armakolas A, Koutsilieris M (2013) Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer. Front Endocrinol (Lausanne) 4:31

    Google Scholar 

  14. Savvani A, Petraki C, Msaouel P et al (2013) IGF-IEc expression is associated with advanced clinical and pathological stage of prostate cancer. Anticancer Res 33:2441–2445

    CAS  PubMed  Google Scholar 

  15. Riddoch-Contreras J, Yang SY, Dick JR et al (2009) Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1 (G93A) mice. Exp Neurol 215:281–289

    Article  CAS  PubMed  Google Scholar 

  16. Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dluzniewska J, Sarnowska A, Beręsewicz M et al (2005) A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia. FASEB J 19:1896–1898

    CAS  PubMed  Google Scholar 

  18. Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203:89–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tang LL, Xian CY, Wang YL (2006) The MGF expression of osteoblasts in response to mechanical overload. Arch Oral Biol 51:1080–1085

    Article  CAS  PubMed  Google Scholar 

  20. Collins JM, Goldspink PH, Russell B (2010) Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol 49:1042–1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cui H, Yi Q, Feng J et al (2014) Mechano growth factor E peptide regulates migration and differentiation of bone marrow mesenchymal stem cells. J Mol Endocrinol 52:111–120

    Article  CAS  PubMed  Google Scholar 

  22. Carpenter V, Matthews K, Devlin G et al (2008) Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ 17:33–39

    Article  PubMed  Google Scholar 

  23. Fornaro M, Hinken AC, Needle S et al (2014) Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells. Am J Physiol Endocrinol Metab 306:E150–E156

    Article  CAS  PubMed  Google Scholar 

  24. Cheema U, Brown R, Mudera V et al (2005) Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletalmuscle. J Cell Physiol 202:67–75

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Wu K, Lin F et al (2013) Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway. Biochem Biophys Res Commun 441:202–207

    Article  CAS  PubMed  Google Scholar 

  26. Goldspink G (2012) Age-related loss of muscle mass and strength. J Aging Res 2012:158279

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kandalla PK, Goldspink G, Butler-Browne G et al (2011) Mechano-growth factor E peptide (MGF-E), derived fromanisform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev 132:154–162

    Article  CAS  PubMed  Google Scholar 

  28. Beresewicz M, Majewska M, Makarewicz D et al (2010) Changes in the expression of insulin-like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int J Dev Neurosci 28:91–97

    Article  CAS  PubMed  Google Scholar 

  29. Go´recki DC, Beresewicz M, Zabłocka B (2007) Neuroprotective effects of short peptides derived from the insulin-like growth factor 1. NeurochemInt 50:451–458

    Article  Google Scholar 

  30. Malemud CJ, Islam N, Haqqi TM (2003) Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells Tissues Organs 174:34–48

    Article  PubMed  Google Scholar 

  31. Pokharna HK, Monnier V, Boja B et al (1995) Lysyl oxidase and Maillard reaction-mediated crosslinks in aging and osteoarthritic rabbit cartilage. J Orthop Res 13:13–21

    Article  CAS  PubMed  Google Scholar 

  32. Xie J, Jiang JH, Zhang YJ et al (2011) Up-regulation expressions oflysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts induced by transforming growth factor-beta. Int Orthop 36:207–213

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kim YH, Peyrol S, So CK et al (1999) Coexpression of the lysyloxidase-like gene (LOXL) and the gene encoding type III procollagen in induced liver fibrosis. J Cell Biochem 72:181–188

    Article  PubMed  Google Scholar 

  34. Jourdan-Le Saux C, Tronecker H, Bogic L et al (1999) The LOXL2 gene encodes a new lysyl oxidase-like protein and is expressed at high levels in reproductive tissues. J Cell Biochem 274:12939–12944

    CAS  Google Scholar 

  35. Jourdan-Le Saux C, Tomsche A, Ujfalusi A et al (2001) Central nervous system, uterus, heart, and leukocyte expression of theLOXL3 gene, encoding a novel lysyl oxidase-like protein. Genomics 74:211–218

    Article  CAS  PubMed  Google Scholar 

  36. Asuncion L, Fogelgren B, Fong KSK et al (2001) A novel human lysyloxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matris Biol 20:487–491

    Article  CAS  Google Scholar 

  37. Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316

    Article  CAS  PubMed  Google Scholar 

  38. Pelletier JP, DiBattista JA, Roughley P et al (1993) Cytokines and inflammation in cartilage degradation. Rheum Dis Clin North Am 19:545–568

    CAS  PubMed  Google Scholar 

  39. Li X, Wang X, Wang Y et al (2014) Inhibition of transient receptor potential melastatin 7 (TRPM7) channel induces RA FLS apoptosis through endoplasmic reticulum (ER) stress. Clin Rheumatol 33:1565–1574

    Article  PubMed  Google Scholar 

  40. Nagahara M, Waguri-Nagaya Y, Yamagami T et al (2010) TNF-alpha induced aquaporin 9 in synoviocytes from patients with OA-and RA. Rheumatology (Oxford) 49:898–906

    Article  CAS  Google Scholar 

  41. Bondeson J, Wainwright SD, Lauder S et al (2006) The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 8:R187

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Innovation and Attracting Talents Program for College and University (“111” Project) (B06023), National Natural Science Foundation of China (11032012, 31270990, and 11172338), Fundamental Research Funds for the Central Universities (106112015CDJRC231206, CDJZR 12238801 and CQDXWL-2014-007). We thank Raina Choi (University of Southern California) for carefully revising the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Song or Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Lei, M., Yu, C. et al. Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis. International Orthopaedics (SICOT) 39, 2503–2509 (2015). https://doi.org/10.1007/s00264-015-2974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2974-5

Keywords

Navigation