Skip to main content

Advertisement

Log in

Infrared assessment of knee instability in ACL deficient patients

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Previous clinical studies have shown that anterior cruciate ligament (ACL) ruptures require reconstructive surgery. The main goal of this study is an objective test definition for unstable knee diagnosis based on real measurements by using infrared cameras and adequate software.

Methods

In the study of gait analysis 35 males with deficient ACL’s participated. Pathological parameters for anterior posterior translation (APT) and internal external rotation (IER) and their values of kinematic data were obtained from a gait analysis 3D system. Movement curves were obtained by recording the position of fluorescent markers over time. A machine learning algorithm was developed in order to support decisions on the severity of the ACL injury and its corresponding deficiency. The algorithm was based on logistic regression.

Results

The value of APT, designated as exponentiation of the Ө coefficient (Exp (Ө)) of APT, showed that the likelihood of ACL-deficient knee occurrence due to higher values of APT is 1.1758 (95 % CI) times more frequent than that of the patients with lower values of APT. The value of IER, designated as Exp (Ө) of IER, showed that the patients with higher values of IER present 2.2516 (95 % CI) times higher values of ACL-deficient knee frequency than those with lower values.

Conclusion

This study showed that the creation of ordered pairs of pathological parameters gives a wider picture of ACL deficiency and that such an algorithm may improve both examination and treatment of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Anteroposterior

APT:

Anterior posterior translation

ACL:

Cruciate ligament

IER:

Internal external rotation

KAM:

Knee abduction moment

MRI:

Magnetic resonance imaging

MCL:

Medial contralateral ligaments

OA:

Osteoarthritis

PCL:

Posterior cruciate ligaments

PCA:

Principal component analysis

References

  1. Woo SLY, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39:1–20. doi:10.1016/j.jbiomech.2004.10.025

    Article  PubMed  Google Scholar 

  2. Sim JA, Kwak JH, Yang SH, Lee BK (2009) Comparative biomechanical study of the Ligament Plate® and other fixation devices in ACL reconstruction. Int Orthop 33:1269–1274. doi:10.1007/s00264-008-0653-5

    Article  PubMed Central  PubMed  Google Scholar 

  3. Georgoulis AD, Ristanis S, Moraiti CO, Paschos N, Zampeli F, Xergia S, Georgiou S, Patras K, Vasiliadis HS, Mitsions G (2010) ACL injury and reconstruction: Clinical related in vivo biomechanics. Orthop Traumatol Surg Res 96S:119–128. doi:10.1016/j.otsr.2010.09.004

    Article  Google Scholar 

  4. Benvenuti JF, Vallotton JA, Meystre JL, Leyvraz PF (1998) Objective assessment of the anterior tibial translation in Lachman test position. Comparison between three types of measurement. Knee Surg Sports Traumatol Arthrosc 6:215–219. doi:10.1007/s001670050102

    Article  CAS  PubMed  Google Scholar 

  5. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg 62:259–270

    CAS  PubMed  Google Scholar 

  6. Shelbourne KD, Klotz C (2006) What I have learned about the ACL: utilizing a progressive rehabilitation scheme to achieve total knees symmetry after anterior cruciate ligament reconstruction. J Orthop Sci 11:318–325. doi:10.1007/s00776-006-1007-z

    Article  PubMed Central  PubMed  Google Scholar 

  7. Yang NH, Canavan PK, Nayeb–Hashemi H, Najafi B, Vaziri A (2010) Protocol for constructing subject—specific biomechanical models of knee joint. Comput Methods Biomech Biomed Engin 13:589–603. doi:10.1080/10255840903389989

    Article  CAS  PubMed  Google Scholar 

  8. Baier C, Fitz W, Craiovan B, Keshmiri A, Winkler S, Springorum R, Grifka J, Beckmann J (2014) Improved kinematics of total knee replacement following partially navigated modified gap-balancing technique. Int Orthop 38:243–249. doi:10.1007/s00264-013-2140-x

    Article  PubMed Central  PubMed  Google Scholar 

  9. Matić A, Ristić B, Devedžić G, Filipović N, Petrović S, Mijailović N, Ćuković S (2012) Gait analysis in patients with chronic anterior cruciate ligament injury. Serbian J Exp Clin Res 13:49–54. doi:10.5937/sjecr13-1614

    Google Scholar 

  10. Filipović N, Isailović V, Nikolić D, Peulić A, Mijailović N, Petrović S et al (2013) Biomechanical modeling of knee for specific patients with chronic anterior cruciate ligament injury. Comput Sci Inform Syst 10:525–545. doi:10.2298/CSIS120531014F

    Article  Google Scholar 

  11. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38:293–298. doi:10.1016/j.jbiomech.2004.02.010

    Article  PubMed  Google Scholar 

  12. Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE (2009) Tibiofemoral kinematics and condylar motion during stance phase of gait. J Biomech 42:1877–1884. doi:10.1016/j.jbiomech.2009.05.003

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mazzocco T, Hussain A (2012) Novel logistic regression models to aid the diagnosis of dementia. Expert Syst Appl 39:3356–3361. doi:10.1016/j.eswa.2011.09.023

    Article  Google Scholar 

  14. Park HA (2013) An introduction to logistic regression: from basic concepts to interpretation with particular attention to nursing domain. J Korean Acad Nurs 43:154–164. doi:10.4040/jkan.2013.43.2.154

    Article  PubMed  Google Scholar 

  15. Bieliza C, Robles V, Larrañaga P (2011) Regularized logistic regression without penality term: An application to cancer classification with microarray data. Expert Syst Appl 38:5110–5118. doi:10.1016/j.eswa.2010.09.140

    Article  Google Scholar 

  16. Shelburne KB, Pandy MG, Torry MR (2004) Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech 37:313–319. doi:10.1016/j.jbiomech.2003.07.001

    Article  PubMed  Google Scholar 

  17. Digennaro V, Zambianchi F, Marcovigi A, Mugnai R, Fiacchi F, Catani F (2014) Design and kinematics in total knee arthroplasty. Int Orthop 38:227–233. doi:10.1007/s00264-013-2245-2

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tashman S, Kopf S, Fu HF (2008) The kinematic basis of anterior cruciate ligament reconstruction. Oper Tech Sports Med 16:116–118. doi:10.1053/j.otsm.2008.10.005

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P (2014) Gait knee kinematics after ACL reconstruction: 3D assessment. Int Orthop 39(6):1187–1193

  20. Wang H, Fleischli EJ, Nigel Zheng N (2012) Effect of lower limb dominance on knee joint kinematics after anterior cruciate ligament reconstruction. Clin Biomech 27:170–175. doi:10.1016/j.clinbiomech.2011.08.006

    Article  Google Scholar 

  21. Luque R, Rizo B, Urda A, Gracia-Crespo R, Moro E, Marco F, López-Duran L (2014) Predictive factors for failure after total knee replacement revision. Int Orthop 38:429–435. doi:10.1007/s00264-013-2268-8

    Article  PubMed Central  PubMed  Google Scholar 

  22. Nüesch C, Valderrabano V, Huber C, von Tscharner V, Pagenstert G (2012) Gait patterns of asymmetric ankle osteoarthritis patients. Clin Biomech 27:613–618. doi:10.1016/j.clinbiomech.2011.12.016

    Article  Google Scholar 

  23. Sanford BA, Zucker-Levin AR, Williams JL, Mihalko WM, Jacobs EL (2012) Principal component analysis of knee kinematics and kinetics after anterior cruciate ligament reconstruction. Gait Posture 36:609–613. doi:10.1016/j.gaitpost.2012.06.003

    Article  PubMed  Google Scholar 

  24. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010) Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clin Biomech 25:693–699. doi:10.1016/j.clinbiomech.2010.04.016

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Ministry of Education and Science of Serbia via Grant No III-41007 and aided by a project of the Faculty of Medical Sciences of the University of Kragujevac via Grant No JP 20/10. We would like to thank Assistant Prof. Srđan Stefanović, med. PhD for helpful suggestions.

Conflict of interest

This research was performed under the approval of the Ethics Committee of the Clinical Centre Kragujevac. The authors are not aware of any conflict of interest that may influence the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Ristić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matić, A., Petrović Savić, S., Ristić, B. et al. Infrared assessment of knee instability in ACL deficient patients. International Orthopaedics (SICOT) 40, 385–391 (2016). https://doi.org/10.1007/s00264-015-2839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2839-y

Keywords

Navigation