Skip to main content

Advertisement

Log in

Primary modular total knee replacement in severe and unstable osteoarthritis. Predictive factors for failure

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Severe cases of osteoarthritis with ligamentous instability require the use of a modular knee arthoplasty. To assess the survival, the complications, the clinical, radiological and functional outcomes, and the quality of life of those patients in whom a Optetrak Condylar Constrained Knee (CCK) had been implanted as a primary implant. To study how the pre-operative conditions (deformity, age, sex …) and the characteristics of the arthroplasty (stems, supplements, constrained component …) could change the survival or the clinical outcomes of the implants.

Methods

We performed an observational retrospective study of 105 CCKs implanted between 1999 and 2005. The mean follow-up was nine years (7, 13). Mean age was 70.5 years. The mortality was 6.9 %. There were 9.3 % of the patients lost during the follow-up. We studied all the medical files of the patients in order to assess the pre-operative, surgical and postoperative conditions. We used the Knee Society Score (KSS), both clinical and functional, to study the functional and clinical situation. We analysed the X-ray using the Knee Society roentgenographic evaluation. The quality of life was studied using the Oxford Knee Score (OKS). Then in order to find predictor conditions, we made statistical multivariable predictive studies attending to the preoperative factors and to the arthroplasty conditions to compare both outcomes and survival (Kaplan-Meier groups curves and Cox Multivariable Models [hazard ratio]). Processing and data analysis was performed using SPSS 15.0.

Results

The outcomes did not show differences between all the groups. While the mean result of the clinical KSS was 75.8, the mean functional KSS was 73.1. We did not find a condition associated with worst results of the knees (p > 0.05). The KSS obtained was excellent or good in 74.9 %. The global survival at 24 months was 93.8 % and at 96 months was 90.1 %. There were some conditions associated with poorest survival of the arthroplasties: patients younger than 70 years old, tibial tuberosity osteotomy, use of long stems and new surgery two months after arthoplasty (p < 0.05). The 11.1 % of the arthroplasties required more surgeries (3.3 % were soft tissue surgeries and 7.8 % were revisions). The mean OKS obtained was 34.78. Satisfaction was obtained by 86.2 % of the patients.

Conclusions

All severe and unstable knees obtained similar and overall excellent-good outcomes and survival using the Optetrak CCK. Although we found that there are some factors that could change the survival of the total knee replacement, these did not change the outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    Article  PubMed  Google Scholar 

  2. Naudie DDR, Rorabeck CH (2004) Managing instability in total knee arthroplasty with constrained and linked implants. AAOS Inst Course Lect 53:207

    Google Scholar 

  3. Nguyen LC, Lehil MS, Bozic KJ (2015) Trends in total knee artholaty implant utilization. J Arthroplasty 30(5):739–742. doi:10.1016/ j.arth.2014.12.009

    Article  PubMed  Google Scholar 

  4. Brooks PJ, Walker PS, Scott RD (1984) Tibial component fixation in deficient tibial bone stock. Clin Orthop Relat Res 184:302–308

    PubMed  Google Scholar 

  5. Bugbee WD, Ammeen DJ, Engh GA (2001) Does implant selection affect outcome of revision knee arthroplasty? J Arthroplasty 16:581–585

    Article  CAS  PubMed  Google Scholar 

  6. Stern SH, Wills RD, Gilbert JL (1997) The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop Relat Res 345:44–52

    PubMed  Google Scholar 

  7. Yoshii I, Whiteside LA, Milliano MT, White SE (1992) The effect of central stem and stem length on micromovement of the tibial tray. J Arthroplasty 7(suppl):433–438

    Article  PubMed  Google Scholar 

  8. Rossi R, Rosso F, Cottino U, Dettoni F, Bonasia DE, Bruzzone M (2014) Total knee arthroplasty in the Valgus Knee. Int Orthop 38(2):273–283. doi:10.1007/s00264-013-2227-4

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kim YH, Kim JS, Oh SW (2002) Total knee arthroplasty in neuropathic arthropathy. J Bone Joint Surg (Br) 84:216

    Article  CAS  Google Scholar 

  10. Vasso M, Beaufils P, Schiavone Panni A (2013) Costrained choice in revision knee arthroplasty. Int Orthop 37(7):1279–1284. doi:10.1007/s00264-013-1929-y

    Article  PubMed Central  PubMed  Google Scholar 

  11. Deshmukh AJ, Rathod PA, Moses MJ, Snir N, Marwin SE, Dayan AJ (2015) Does a non-stemmed constrained condylar prosthesis predispose to early failure of primary total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3494-3

  12. Lachiewicz PF, Fatalyn SP (1996) Clinical and radiographic results of the Total Condylar III and constrained condylar total knee arthroplasty. J Arthroplasty 11:916

    Article  CAS  PubMed  Google Scholar 

  13. Anderson JA, Baldini A, MacDonald JA, Pellicc P, Sculco T (2006) Primary constrained condylar knee arthroplasty without stem extensions for the valgus knee. Clin Orthop Relat Res 442:199–203

    Article  PubMed  Google Scholar 

  14. Lachiewicz PF, Soileau ES (2006) Ten-year survival and clinical results of constrained components in primary total knee arthroplasty. J Arthroplasty 21(6):803–808

    Article  PubMed  Google Scholar 

  15. Weaver F, Hynes D, Hopkinson W et al (2003) Preoperative risks and outcomes of hip and knee arthroplasty in the Veterans Health Administration. J Arthroplasty 18:693–701

    Article  PubMed  Google Scholar 

  16. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res (248):9–12

  17. Xiao-gang Z, Shahzad K, Li C (2012) One-stage total knee arthroplasty for patients with osteoarthritis of the knee and extra-articular deformity. Int Orthop 36(12):2457–2463. doi:10.1007/s00264-012-1695-2

    Article  PubMed Central  PubMed  Google Scholar 

  18. Asif S, Choon DSK (2005) Midterm results of cemented Press Fit Condylar Sigma total knee arthroplasty system. J Orthop Surg 13(3):280–284

    CAS  Google Scholar 

  19. Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg (Br) 80(1):63–69

    Article  CAS  Google Scholar 

  20. Luque R, Rizo B, Urda A, García-Crepo R, Moro E, Marco F, Lopez-Durán L (2014) Predictive factors for failure after total knee replacement revision. Int Orthop 38(2):429–435. doi:10.1007/s0064

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kane RL, Saleh KJ, Wilt TJ, Bershadsky B (2005) The functional outcomes of total knee arthroplasty. J Bone Joint Surg Am 87(8):1719–1724

    Article  PubMed  Google Scholar 

  22. Robinson RP (2005) Five-year follow-up of primary Optetrak Posterior Stabilized total knee arthroplasties in osteoarthritis. J Arthroplasty 20(7):927–931

    Article  PubMed  Google Scholar 

  23. García-Crespo R, Marco F, Moro LE, Ariza G, Luque R, López-Durán L (2011) Midterm results of Optetrak posterior-stabilized total knee system after 7 to 12 years in a university hospital. J Arthroplasty 26(8):1326–1332

    Article  PubMed  Google Scholar 

  24. Thelu CE, Pasquier G, Maynou C, Migaud H (2012) Poor results of the Optetrak™ cemented posterior stabilized knee prosthesis after a mean 25-month follow-up: analysis of 110 prostheses. Orthop Traumatol Surg Res 98(4):413–420

    Article  PubMed  Google Scholar 

  25. Abbas D, Gunn RS (2006) Medium-term results of the Scorpio Total Knee Replacement. Knee 13:307–311

    Article  PubMed  Google Scholar 

  26. Nakama GY, Peccin MS, Almeida GJ, Lira Neto Ode A, Queiroz AA, Navarro RD (2012) Cemented, cementless or hybrid fixation options in total knee arthroplasty for osteoarthritis and other non-traumatic diseases. Cochrane Database Syst Rev 10:CD006193

  27. Martin SD, McManus JL, Scott RD, Thornhill TS (1997) Press-fit condylar total knee arthroplasty. 5- to 9-year follow-up evaluation. J Arthroplasty 12:603–614

    Article  CAS  PubMed  Google Scholar 

  28. Buehler KO, Venn-Watson E, D’Lima DD, Colwell CW Jr (2000) The press-fit condylar total knee system: 8- to 10-year results with a posterior cruciate-retaining design. J Arthroplasty 15:698–701

    Article  CAS  PubMed  Google Scholar 

  29. Mont MA, Marker DR, Seyler TM (2007) Knee Arthroplasties Have Similar Results in High- and Low-activity Patients. Clin Orthop Relat Res 460:165–173

    PubMed  Google Scholar 

  30. Amin AK, Clayton RA, Patton JT, Gaston M, Cook RE, Brenkel IJ (2006) Total knee replacement in morbidly obese patients. Results of a prospective, matched study. J Bone Joint Surg (Br) 88(10):1321–1326

    Article  CAS  Google Scholar 

  31. Benjamin J, Tucker T, Ballesteros P (2001) Is obesity a contraindication to bilateral total knee arthroplasties under one anesthetic? Clin Orthop Relat Res (392):190–195

  32. Kerkhoffs GM, Servien E, Dunn W, Dahm D, Bramer JA, Haverkamp D (2012) The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am 94(20):1839–1844

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dowsey MM, Liew D, Stoney JD, Choong PF (2010) The impact of pre-operative obesity on weight change and outcome in total knee replacement: a prospective study of 529 consecutive patients. J Bone Joint Surg (Br) 92(4):513–520

    Article  CAS  Google Scholar 

  34. Jäarvenpää J, Kettunen J, Kröger H, Miettinen H (2010) Obesity may impair the early outcome of total knee arthroplasty. Scand J Surg 99(1):45–49

    Google Scholar 

  35. Coyte PC, Hawker G, Croxford R (1999) Variation in rheumatologists’ and family physicians’ perceptions of the indications for and outcomes of knee replacement surgery. J Rheumatol 23(4):730–738

    Google Scholar 

  36. Furnes O, Espehaug B, Lie SA, Vollset SE, Engesaeter LB, Havelin LI (2002) Early failures among 7,174 primary total knee replacements: a follow-up study from the Norwegian Arthroplasty Register 1994–2000. Acta Orthop Scand 73:117–129

    Article  PubMed  Google Scholar 

  37. Suárez J, Griffin W, Springer B, Fehring T, Mason JB, Odum S (2008) Why do revision knee artrhroplasties fail? J Arthroplasty 23(suppl 1):99–103

    Article  PubMed  Google Scholar 

  38. Vessely MB, Frick MA, Oakes D (2006) Magnetic resonance imaging with metal supression for evaluation of periprosthetic osteolysis after total knee arthoplsty. J Arthroplasty 21:826–831

    Article  PubMed  Google Scholar 

  39. Knutson K, Lewold S, Robertsson O, Lidgren L (1994) The Swedish knee arthroplasty register: a nation-wide study of 30,003 knees 1976–1992. Acta Orthop Scand 65:375–386

    Article  CAS  PubMed  Google Scholar 

  40. Lavernia CJ, Sierra RJ, Hungerford DS, Krackow K (2001) Activity level and wear in total knee arthroplasty: a study of autopsy retrieved specimens. J Arthroplasty 16:446–453

    Article  CAS  PubMed  Google Scholar 

  41. Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC (1998) Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am 80:54–59

    Article  CAS  PubMed  Google Scholar 

  42. Zahiri CA, Schmalzried TP, Szuszczewicz ES, Amstutz HC (1998) Assessing activity in joint replacement patients. J Arthroplasty 13:890–895

    Article  CAS  PubMed  Google Scholar 

  43. Ong KL, Lau E, Suggs J, Kurtz SM, Manley MT (2010) Risk of subsequent revision after primary and revision total joint arthroplasty. Clin Orthop Relat Res 468(11):3070–3076

    Article  PubMed Central  PubMed  Google Scholar 

  44. Spicer DM, Pomeroy DL, Badenhausen WE, Schaper LA, Curry JI, Suthers KE (2001) Body mass index as a predictor of outcome in total knee replacement. Int Orthop 25:246–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Foran JR, Mont MA, Rajadhyaksha AD, Jones LC, Etienne G, Hungerford DS (2004) Total knee arthroplasty in obese patients: a comparison with a matched control group. J Arthroplasty 19(7):817–824

    Article  PubMed  Google Scholar 

  46. Weiss RJ, Thorsell M, Stark A, Nyvang J, Hedstrom M (2014) 2 to 9 year outcome of stemmed total knee arthroplasty. Similar failure rates in patients when used primary or as a revision. Acta Orthop 85(6):609–613. doi:10.3109/17453674.2014.962411

    Article  PubMed Central  PubMed  Google Scholar 

  47. Maynard LM, Sauber TJ, Kostopoulos VK, Lavinge GS, Sewecke JJ, Sotereanos (2014) Survival of primary condylar-constrained total knee arthroplasty at a minimum of 7 years. J Arthroplasty 29(6):1197–1201. doi:10.1016/j.arth.2013.11.018

    Article  PubMed  Google Scholar 

  48. Cholewinski P, Putman S, Vasseur L, Migaud H, Duhamei A, Behai H, Pasquier G (2015) Long-term outcomes of primary constrained condylar knee arthroplasty. Orthop Traumatol Surg Res. doi:10.1016/j.orsr.2015.01.020

    PubMed  Google Scholar 

Download references

Disclosure statement

All authors confirm they have not received any financial payments or other benefits from any commercial entity related to the subject of this article. No outside funding or grants assisted this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Luque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luque, R., Rizo, B., Urda, A. et al. Primary modular total knee replacement in severe and unstable osteoarthritis. Predictive factors for failure. International Orthopaedics (SICOT) 39, 2125–2133 (2015). https://doi.org/10.1007/s00264-015-2807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2807-6

Keywords

Navigation