Skip to main content
Log in

Bicortical screw fixation provides superior biomechanical stability but devastating failure modes in periprosthetic femur fracture care using locking plates

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The incidence of periprosthetic fractures is inevitably increasing. Sufficient stabilisation and proper screw placement next to large-volume implants remains difficult. Modern locking plates allow polyaxial, thus bicortical, screw placement around a prosthetic stem. This study analysed the biomechanical properties of different screw configurations in a locking plate construct of a periprosthetic femoral fracture model.

Methods

A total of 20 Sawbones were used to stabilise a Vancouver-B1 femoral fracture with a locking plate using either four monocortical screws or three bicortical screws for proximal fixation. These were loaded with an increasing axial compression until failure.

Results

Bicortical screw purchase was significantly superior to monocortical regarding load to failure (1,510 N ± 284 N versus 2,350 N ± 212 N, p < 0.001) and maximal number of cycles (6803 ± 760 versus 4041 ± 923, p < 0.001). However, the mode of failure in the bicortical group was a severe comminuted fracture pattern as opposed to the monocortical group in which a pull-out of the screws without further damage to the bone was observed.

Conclusions

Bicortical screw placement enhances the primary stability in treating periprosthetic femoral fractures. Notably, the mode of failure may limit the salvage options in case of revision surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Della Rocca GJ, Leung KS, Pape HC (2011) Periprosthetic fractures: epidemiology and future projections. J Orthop Trauma 25(Suppl 2):S66–S70. doi:10.1097/BOT.0b013e31821b8c28

    Article  PubMed  Google Scholar 

  2. Moreta J, Aguirre U, de Ugarte OS, Jauregui I, Mozos JL (2015) Functional and radiological outcome of periprosthetic femoral fractures after hip arthroplasty. Injury 46(2):292-298. doi:10.1016/j.injury.2014.07.013

    Article  PubMed  Google Scholar 

  3. Young SW, Pandit S, Munro JT, Pitto RP (2007) Periprosthetic femoral fractures after total hip arthroplasty. ANZ J Surg 77(6):424–428. doi:10.1111/j.1445-2197.2007.04087.x

    Article  PubMed  Google Scholar 

  4. Boesmueller S, Michel M, Hofbauer M, Platzer P (2015) Primary cementless hip arthroplasty as a potential risk factor for non-union after long-stem revision arthroplasty in periprosthetic femoral fractures. Int Orthop 39(4):617-622. doi:10.1007/s00264-014-2489-5

    Article  PubMed  Google Scholar 

  5. Masri BA, Meek RMD, Duncan CP (2004) Periprosthetic fractures evaluation and treatment. Clin Orthop Relat Res 420:80–95

    Article  PubMed  Google Scholar 

  6. Parvizi J, Vegari DN (2011) Periprosthetic proximal femur fractures: current concepts. J Orthop Trauma 25(Suppl 2):S77–S81. doi:10.1097/BOT.0b013e31821b8c3b

    Article  PubMed  Google Scholar 

  7. Wahnert D, Schliemann B, Raschke MJ, Kosters C (2014) Treatment of periprosthetic fractures: new concepts in operative treatment. Orthopade 43(4):306–313. doi:10.1007/s00132-013-2165-2

    Article  CAS  PubMed  Google Scholar 

  8. Hagel A, Siekmann H, Delank KS (2014) Periprosthetic femoral fracture—an interdisciplinary challenge. Dtsch Arztebl Int 111(39):658–664. doi:10.3238/arztebl.2014.0658

    PubMed Central  PubMed  Google Scholar 

  9. Duncan CP, Haddad FS (2014) The Unified Classification System (UCS): improving our understanding of periprosthetic fractures. Bone Joint J 96-b(6):713–716. doi:10.1302/0301-620x.96b6.34040

    Article  CAS  PubMed  Google Scholar 

  10. Hoffmann MF, Burgers TA, Mason JJ, Williams BO, Sietsema DL, Jones CB (2014) Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system. Injury 45(7):1035–1041. doi:10.1016/j.injury.2014.02.038

    Article  PubMed  Google Scholar 

  11. Wahnert D, Schroder R, Schulze M, Westerhoff P, Raschke M, Stange R (2014) Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. Int Orthop 38(1):47–53. doi:10.1007/s00264-013-2113-0

    Article  PubMed Central  PubMed  Google Scholar 

  12. Müller M, Kääb M, Tohtz S, Haas NP, Perka C (2009) Periprosthetic femoral fractures: outcome after treatment with LISS internal fixation or stem replacement in 36 patients. Acta Orthop Belg 75(6):776–783

    PubMed  Google Scholar 

  13. Lenz M, Gueorguiev B, Joseph S, van der Pol B, Richards RG, Windolf M, Schwieger K, de Boer P (2012) Angulated locking plate in periprosthetic proximal femur fractures: biomechanical testing of a new prototype plate. Arch Orthop Trauma Surg 132(10):1437–1444. doi:10.1007/s00402-012-1556-x

    Article  PubMed  Google Scholar 

  14. Marsland D, Mears SC (2012) A review of periprosthetic femoral fractures associated with total hip arthroplasty. Geriatr Orthop Surg Rehabil 3(3):107–120. doi:10.1177/2151458512462870

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lenz M, Perren SM, Richards RG, Muckley T, Hofmann GO, Gueorguiev B, Windolf M (2013) Biomechanical performance of different cable and wire cerclage configurations. Int Orthop 37(1):125–130. doi:10.1007/s00264-012-1702-7

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lenz M, Perren SM, Gueorguiev B, Hontzsch D, Windolf M (2013) Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin Biomech (Bristol, Avon) 28(9–10):988–993. doi:10.1016/j.clinbiomech.2013.09.005

    Article  Google Scholar 

  17. Demos HA, Briones MS, White PH, Hogan KA, Barfield WR (2012) A biomechanical comparison of periprosthetic femoral fracture fixation in normal and osteoporotic cadaveric bone. J Arthroplasty 27(5):783–788. doi:10.1016/j.arth.2011.08.019

    Article  PubMed  Google Scholar 

  18. Beals RK, Tower SS (1996) Periprosthetic fractures of the femur. An analysis of 93 fractures. Clin Orthop Relat Res 327:238–246

    Article  PubMed  Google Scholar 

  19. Zuurmond RG, van Wijhe W, van Raay JJ, Bulstra SK (2010) High incidence of complications and poor clinical outcome in the operative treatment of periprosthetic femoral fractures: an analysis of 71 cases. Injury 41(6):629–633. doi:10.1016/j.injury.2010.01.102

    Article  CAS  PubMed  Google Scholar 

  20. Moazen M, Jones AC, Jin Z, Wilcox RK, Tsiridis E (2011) Periprosthetic fracture fixation of the femur following total hip arthroplasty: a review of biomechanical testing. Clin Biomech (Bristol, Avon) 26(1):13–22. doi:10.1016/j.clinbiomech.2010.09.002

    Article  Google Scholar 

  21. Bredbenner TL, Snyder SA, Mazloomi FR, Le T, Wilber RG (2005) Subtrochanteric fixation stability depends on discrete fracture surface points. Clin Orthop Relat Res 432:217–225

    Article  PubMed  Google Scholar 

  22. Duda GN, Schneider E, Chao EY (1997) Internal forces and moments in the femur during walking. J Biomech 30(9):933–941

    Article  CAS  PubMed  Google Scholar 

  23. Lim SJ, Lee KJ, Min BW, Song JH, So SY, Park YS (2014) High incidence of stem loosening in association with periprosthetic femur fractures in previously well-fixed cementless grit-blasted tapered-wedge stems. Int Orthop. doi:10.1007/s00264-014-2586-5

    PubMed Central  Google Scholar 

  24. Lenz M, Perren SM, Gueorguiev B, Richards RG, Hofmann GO, Fernandez dell’Oca A, Hontzsch D, Windolf M (2014) A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury 45(Suppl 1):S71–S75. doi:10.1016/j.injury.2013.10.027

    Article  PubMed  Google Scholar 

  25. Bergmann G, Graichen F, Rohlmann A (2004) Hip joint contact forces during stumbling. Langenbeck’s Arch Surg 389(1):53–59. doi:10.1007/s00423-003-0434-y

    Article  CAS  Google Scholar 

  26. Schwachmeyer V, Damm P, Bender A, Dymke J, Graichen F, Bergmann G (2013) In vivo hip joint loading during post-operative physiotherapeutic exercises. PLoS One 8(10), e77807. doi:10.1371/journal.pone.0077807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmuller A, Sudkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41(12):1256–1261. doi:10.1016/j.injury.2010.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

For this type of study formal consent is not required.

Conflict of interest

The authors were not compensated. Benefits were received in support of the research material described in this article from Zimmer GmbH (Winterthur, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Gwinner.

Additional information

Clemens Gwinner and Sven Märdian contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwinner, C., Märdian, S., Dröge, T. et al. Bicortical screw fixation provides superior biomechanical stability but devastating failure modes in periprosthetic femur fracture care using locking plates. International Orthopaedics (SICOT) 39, 1749–1755 (2015). https://doi.org/10.1007/s00264-015-2787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2787-6

Keywords

Navigation