Skip to main content
Log in

Human evolution and tears of the rotator cuff

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Humans differ from other great ape species in their propensity to develop tears of the rotator cuff. The aim of this study was to compare the anatomical risk factors for subacromial impingement and rotator cuff tears amongst the great apes and to determine which features may be accentuated in humans and therefore play a more significant role in disease aetiology.

Methods

Orthogonal digital photographs of 22 human, 17 gorilla, 13 chimpanzee and 12 orangutan dry bone scapula specimens oriented in the glenoid plane were taken. Anatomical measurements were preformed using a calibrated digital image technique and the results scaled according to scapula vertebral border length.

Results

Of the ten anatomical features associated with subacromial impingement and rotator cuff tears in humans, none were shown to be accentuated and significantly different to the other species studied. However the human supraspinatus fossa was shown to be significantly smaller.

Conclusions

These results indicate that an alternative primary aetiological factor for rotator cuff tears must exist. A reduction in the size of the supraspinatus fossa in human scapulae suggests that structural insufficiency of the supraspinatus or a change in rotator cuff force vectors could play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neer CS (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am 54:41–50

    PubMed  Google Scholar 

  2. Anetzberger H, Maier M, Zysk S et al (2004) The architecture of the subacromial space after full thickness supraspinatus tears. Z Orthop Ihre Grenzgeb 142:221–227. doi:10.1055/s-2004-818780

    Article  CAS  PubMed  Google Scholar 

  3. Banas MP, Miller RJ, Totterman S (1995) Relationship between the lateral acromion angle and rotator cuff disease. J Shoulder Elb Surg 4:454–461

    Article  CAS  Google Scholar 

  4. Bigliani LU (1986) The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans 10:228

    Google Scholar 

  5. Edelson JG, Taitz C (1992) Anatomy of the coraco-acromial arch. Relation to degeneration of the acromion. J Bone Joint Surg Br 74:589–594

    CAS  PubMed  Google Scholar 

  6. Flieg NG, Gatti CJ, Doro LC et al (2008) A stochastic analysis of glenoid inclination angle and superior migration of the humeral head. Clin Biomech (Bristol, Avon) 23:554–561. doi:10.1016/j.clinbiomech.2008.01.001

    Article  Google Scholar 

  7. Gohlke F, Barthel T, Gandorfer A (1993) The influence of variations of the coracoacromial arch on the development of rotator cuff tears. Arch Orthop Trauma Surg 113:28–32

    Article  CAS  PubMed  Google Scholar 

  8. Hughes RE, Bryant CR, Hall JM et al. (2003) Glenoid inclination is associated with full-thickness rotator cuff tears. Clin Orthop Relat Res 407:86–91

    Google Scholar 

  9. Nyffeler RW, Werner CML, Sukthankar A et al (2006) Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am 88:800–805. doi:10.2106/JBJS.D.03042

    Article  PubMed  Google Scholar 

  10. Prato N, Peloso D, Franconeri A et al (1998) The anterior tilt of the acromion: radiographic evaluation and correlation with shoulder diseases. Eur Radiol 8:1639–1646

    Article  CAS  PubMed  Google Scholar 

  11. Tétreault P, Krueger A, Zurakowski D, Gerber C (2004) Glenoid version and rotator cuff tears. J Orthop Res 22:202–207. doi:10.1016/S0736-0266(03)00116-5

    Article  PubMed  Google Scholar 

  12. Tokgoz N, Kanatli U, Voyvoda NK et al (2007) The relationship of glenoid and humeral version with supraspinatus tendon tears. Skelet Radiol 36:509–514. doi:10.1007/s00256-007-0290-x

    Article  Google Scholar 

  13. Wong AS, Gallo L, Kuhn JE et al (2003) The effect of glenoid inclination on superior humeral head migration. J Shoulder Elb Surg 12:360–364. doi:10.1016/S1058-2746(03)00026-0

    Article  Google Scholar 

  14. Zuckerman JD, Kummer FJ, Cuomo F et al (2009) The influence of coracoacromial arch anatomy on rotator cuff tears. J Shoulder Elb Surg 1:4–14. doi:10.1016/S1058-2746(09)80010-4

    Article  Google Scholar 

  15. Ozaki J, Fujimoto S, Nakagawa Y et al (1988) Tears of the rotator cuff of the shoulder associated with pathological changes in the acromion. A study in cadavera. J Bone Joint Surg Am 70:1224–1230

    CAS  PubMed  Google Scholar 

  16. Potau JM, Bardina X, Ciurana N (2007) Subacromial space in African great apes and subacromial impingement syndrome in humans. Int J Primatol 28:865–880. doi:10.1007/s10764-007-9167-z

    Article  Google Scholar 

  17. Roberts AM (2008) Rotator cuff disease in humans and apes: a palaeopathological and evolutionary perspective on shoulder pathology. Dissertation, University of Bristol

  18. Selby M (2012) Evolution of the hominoid forelimb skeleton from miocene to present. Dissertation, Kent State University

  19. Edelson JG (1995) The“hooked” acromion revisited. J Bone Joint Surg Br 77:284–287

    CAS  PubMed  Google Scholar 

  20. Chambler A, Bull A, Reilly P et al (2003) Coracoacromial ligament tension in vivo. J Shoulder Elb Surg 12:365–367. doi:10.1016/S1058-2746(03)00031-4

    Article  CAS  Google Scholar 

  21. Dogan M, Cay N, Tosun O et al (2012) Glenoid axis is not related with rotator cuff tears–a magnetic resonance imaging comparative study. Int Orthop (SICOT) 36:595–598. doi:10.1007/s00264-011-1356-x

    Article  Google Scholar 

  22. Nakajima T, Rokuuma N, Hamada K et al (1994) Histologic and biomechanical characteristics of the supraspinatus tendon: reference to rotator cuff tearing. J Shoulder Elb Surg 3:79–87. doi:10.1016/S1058-2746(09)80114-6

    Article  CAS  Google Scholar 

  23. Bey MJM, Song HKH, Wehrli FWF, Soslowsky LJL (2002) Intratendinous strain fields of the intact supraspinatus tendon: the effect of glenohumeral joint position and tendon region. J Orthop Res 20:869–874. doi:10.1016/S0736-0266(01)00177-2

    Article  PubMed  Google Scholar 

  24. Chen SK, Simonian PT, Wickiewicz TL et al (1999) Radiographic evaluation of glenohumeral kinematics: a muscle fatigue model. J Shoulder Elb Surg 8:49–52

    Article  CAS  Google Scholar 

  25. Soslowsky LJ, Thomopoulos S, Tun S et al (2000) Neer award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elb Surg 9:79–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr Roberto Portela Miguez — Curator of the mammal collections of the Natural History Museum of London. All primate scapula images © Natural History Museum, London.

Dr Matthew Szarko — Academic Director and Lecturer in Anatomy, St. George’s University of London.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan D. Craik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craik, J.D., Mallina, R., Ramasamy, V. et al. Human evolution and tears of the rotator cuff. International Orthopaedics (SICOT) 38, 547–552 (2014). https://doi.org/10.1007/s00264-013-2204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2204-y

Keywords

Navigation