Skip to main content
Log in

Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

A controversial relationship between osteoarthritis (OA) and bone fragility has been attracting considerable attention. However, despite interest in the effects of OA on femoral neck fracture risk and numerous studies analysing the changes in the arthritic femoral head, there is insufficient data about femoral neck 3D bone micro-architecture in individuals with hip osteoarthritis. We compared trabecular micro-architecture of the femoral neck between postmenopausal women with coxarthrosis and controls to explore whether coxarthrosis may indicate reduced bone fragility from the trabecular micro-architectural perspective.

Methods

The study sample included nine women with hip osteoarthritis and 13 age-matched controls. The femoral neck sections were scanned using micro-computed tomography, evaluating the cancellous bone from the superolateral and inferomedial neck subregions.

Results

Osteoarthritic subjects demonstrated a general trend of improved trabecular micro-architecture in both analysed subregions when compared with age-matched controls. In particular, several architectural properties that are important predictors of cancellous bone strength showed significantly better values in the OA group, even after adjusting for bone volume fraction. Namely, the OA group expressed higher trabecular connectivity (p = 0.008), lower SMI indicating more plate-like structure (p = 0.005), and reduced anisotropy (p = 0.006) particularly in the inferomedial neck. Osteoarthritic cases also trended towards higher BV/TV, particularly in the superolateral neck. All micro-architectural parameters displayed significant regional heterogeneity (p ≤ 0.01), with the inferomedial neck region showing more favourable values than the superolateral region.

Conclusions

Enhanced trabecular micro-architecture of the femoral neck in postmenopausal osteoarthritic subjects suggests reduced cancellous bone fragility in comparison with their age-matched healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooper C, Cook PL, Osmond C, Fisher L, Cawley MI (1991) Osteoarthritis of the hip and osteoporosis of the proximal femur. Ann Rheum Dis 50:540–542. doi:10.1136/ard.50.8.540

    Article  PubMed  CAS  Google Scholar 

  2. Dequeker J, Aerssens J, Luyten FP (2003) Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 15(5):426–439

    PubMed  Google Scholar 

  3. Weintroub S, Papo J, Ashkenazi M, Tardiman R, Weissman SL, Salama R (1982) Osteoarthritis of the hip and fracture of the proximal end of the femur. Acta Orthop Scand 53(2):261–264

    Article  PubMed  CAS  Google Scholar 

  4. Perilli E, Baleani M, Öhman C, Baruffaldi F, Viceconti M (2007) Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone 41(5):760–768

    Article  PubMed  CAS  Google Scholar 

  5. Papaloucas CD, Ward RJ, Tonkin CJ, Buckland-Wright C (2005) Cancellous bone changes in hip osteoarthritis: a short-term longitudinal study using fractal signature analysis. Osteoarthr Cartil 13(11):998–1003. doi:10.1016/j.joca.2005.06.009

    Article  PubMed  CAS  Google Scholar 

  6. Mäkinen TJ, Alm JJ, Laine H, Svedström E, Aro HT (2007) The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement. Bone 40(4):1041–1047

    Article  PubMed  Google Scholar 

  7. Chaganti R, Parimi N, Lang T, Orwoll E, Stefanick M, Nevitt M, Lane N (2010) Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) study group. Osteoporos Int 21(8):1307–1316. doi:10.1007/s00198-009-1105-9

    Article  PubMed  CAS  Google Scholar 

  8. Javaid MK, Lane NE, Mackey DC, Lui LY, Arden NK, Beck TJ, Hochberg MC, Nevitt MC (2009) Changes in proximal femoral mineral geometry precede the onset of radiographic hip osteoarthritis: The study of osteoporotic fractures. Arthritis Rheum 60(7):2028–2036. doi:10.1002/art.24639

    Article  PubMed  CAS  Google Scholar 

  9. Blain H, Chavassieux P, Portero-Muzy N, Bonnel F, Canovas F, Chammas M, Maury P, Delmas PD (2008) Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43(5):862–868

    Article  PubMed  CAS  Google Scholar 

  10. Tassani S, Öhman C, Baleani M, Baruffaldi F, Viceconti M (2010) Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. J Biomech 43(6):1160–1166

    Article  PubMed  Google Scholar 

  11. Fazzalari NL, Parkinson IH (1998) Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthr Cartil 6(6):377–382

    Article  PubMed  CAS  Google Scholar 

  12. Tassani S, Particelli F, Perilli E, Traina F, Baruffaldi F, Viceconti M (2011) Dependence of trabecular structure on bone quantity: a comparison between osteoarthritic and non-pathological bone. Clin Biomech 26(6):632–639

    Article  Google Scholar 

  13. Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E, Benhamou CL (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr Cartil 14(3):215–223. doi:10.1016/j.joca.2005.09.008

    Article  PubMed  CAS  Google Scholar 

  14. Zhang ZM, Li ZC, Jiang LS, Jiang SD, Dai LY (2010) Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int 21(8):1383–1390. doi:10.1007/s00198-009-1071-2

    Article  PubMed  Google Scholar 

  15. Zhang ZM, Jiang LS, Jiang SD, Dai LY (2009) Differential articular calcified cartilage and subchondral bone in postmenopausal women with osteoarthritis and osteoporosis: two-dimensional analysis. Joint Bone Spine 76(6):674–679. doi:10.1016/j.jbspin.2009.03.011

    Article  PubMed  Google Scholar 

  16. Jordan GR, Loveridge N, Bell KL, Power J, Dickson GR, Vedi S, Rushton N, Clarke MT, Reeve J (2003) Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone 32(1):86–95

    Article  PubMed  CAS  Google Scholar 

  17. Neilson M, White A, Malik U, Morrison E, McGill PE, McDonald SW (2004) Changes in bone architecture in the femoral head and neck in osteoarthritis. Clin Anat 17(5):378–391. doi:10.1002/ca.10177

    Article  PubMed  Google Scholar 

  18. Jordan GR, Loveridge N, Power J, Clarke MT, Reeve J (2003) Increased cancellous bone in the femoral neck of patients with coxarthrosis (hip osteoarthritis): a positive remodeling imbalance favoring bone formation. Osteoporos Int 14(2):160–165. doi:10.1007/s00198-002-1351-6

    PubMed  CAS  Google Scholar 

  19. Rubinacci A, Tresoldi D, Scalco E, Villa I, Adorni F, Moro G, Fraschini G, Rizzo G (2012) Comparative high-resolution pQCT analysis of femoral neck indicates different bone mass distribution in osteoporosis and osteoarthritis. Osteoporos Int 23(7):1967–1975. doi:10.1007/s00198-011-1795-7

    Google Scholar 

  20. Boutroy S, Vilayphiou N, Roux J-P, Delmas PD, Blain H, Chapurlat RD, Chavassieux P (2011) Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone 49(5):1055–1061

    Article  PubMed  Google Scholar 

  21. Djuric M, Djonic D, Milovanovic P, Nikolic S, Marshall R, Marinkovic J, Hahn M (2010) Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility. Calcif Tissue Int 86(3):192–201. doi:10.1007/s00223-009-9325-8

    Article  PubMed  CAS  Google Scholar 

  22. Milovanovic P, Djonic D, Marshall RP, Hahn M, Nikolic S, Zivkovic V, Amling M, Djuric M (2012) Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. Bone 50(1):63–68

    Article  PubMed  Google Scholar 

  23. Djonic D, Milovanovic P, Nikolic S, Ivovic M, Marinkovic J, Beck T, Djuric M (2011) Inter-sex differences in structural properties of aging femora: implications on differential bone fragility: a cadaver study. J Bone Miner Metab 29(4):449–457. doi:10.1007/s00774-010-0240-x

    Article  PubMed  Google Scholar 

  24. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366(9480):129–135

    Article  PubMed  Google Scholar 

  25. Müller R, van Lenthe GH (2006) Trabecular bone failure at the microstructural level. Curr Osteoporos Rep 4(2):80–86. doi:10.1007/s11914-006-0007-4

    Article  PubMed  Google Scholar 

  26. Homminga J, Van-Rietbergen B, Lochmüller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34(3):510–516. doi:10.1016/j.bone.2003.12.001

    Article  PubMed  CAS  Google Scholar 

  27. Bailey AJ, Mansell JP, Sims TJ, Banse X (2004) Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology 41(3):349–358

    PubMed  CAS  Google Scholar 

  28. Lavigne P, Benderdour M, Lajeunesse D, Reboul P, Shi Q, Pelletier JP, Martel-Pelletier J, Fernandes JC (2005) Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthr Cartil 13(4):310–317

    Article  PubMed  CAS  Google Scholar 

  29. Li B, Aspden R (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651

    Article  PubMed  CAS  Google Scholar 

  30. Iliescu N, Dan Pastrama S, Gruionu LG, Jiga G (2008) Biomechanical changes of hip joint following different types of corrective osteotomy—photoelastic studies. Acta Bioeng Biomech 10(3):65–71. doi:101194794

    PubMed  Google Scholar 

  31. Elkholy AH, Ghista DN, Souza FS, Kutty MS (2005) Stress analysis of normal and osteoarthritic femur using finite element analysis. Int J Comput Appl Tech 22:205–211. doi:10.1504/ijcat.2005.006958

    Article  Google Scholar 

  32. Skedros JG, Baucom SL (2007) Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: The unfortunate historical emphasis on the human proximal femur. J Theor Biol 244(1):15–45

    Article  PubMed  Google Scholar 

  33. Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg 85-B(6):906–912. doi:10.1302/0301-620x.85b6.12595

    Google Scholar 

  34. Milovanovic P, Potocnik J, Djonic D, Nikolic S, Zivkovic V, Djuric M, Rakocevic Z (2012) Age-related deterioration in trabecular bone mechanical properties at material level: Nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol 47(2):154–159. doi:10.1016/j.exger.2011.11.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Ministry of Science of the Republic of Serbia, Project: III45005. S. Zagorac and M. Bumbasirevic are employed on the Project 175095.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Amling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djuric, M., Zagorac, S., Milovanovic, P. et al. Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women. International Orthopaedics (SICOT) 37, 21–26 (2013). https://doi.org/10.1007/s00264-012-1713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1713-4

Keywords

Navigation